{ "policy_class": { ":type:": "", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=", "__module__": "stable_baselines3.td3.policies", "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "", "_build": "", "_get_constructor_parameters": "", "make_actor": "", "make_critic": "", "forward": "", "_predict": "", "set_training_mode": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7feb8e8f4cc0>" }, "verbose": 1, "policy_kwargs": { "n_critics": 1 }, "observation_space": { ":type:": "", ":serialized:": "gAWVFQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLC4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwuFlIwBQ5R0lFKUjARoaWdolGgSKJZYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLC4WUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYLAAAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwuFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCwAAAAAAAAAAAAAAAAAAAAAAAJRoIUsLhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float64", "_shape": [ 11 ], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVGAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "dtype": "float32", "_shape": [ 3 ], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": "RandomState(MT19937)" }, "n_envs": 1, "num_timesteps": 1000380, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": { ":type:": "", ":serialized:": "gAWVCgEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwOFlIwBQ5R0lFKUjAZfc2lnbWGUaAgolhgAAAAAAAAAmpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/lGgPSwOFlGgTdJRSlHViLg==", "_mu": "[0. 0. 0.]", "_sigma": "[0.1 0.1 0.1]" }, "start_time": 1675862092424782537, "learning_rate": 0.001, "tensorboard_log": "runs/Hopper-v3__ddpg__931018386__1675862085/Hopper-v3", "lr_schedule": { ":type:": "", ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg==" }, "_last_original_obs": { ":type:": "", ":serialized:": "gAWVzQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZYAAAAAAAAAE94YwhMn+Y/iwe1U0jCpD8RutkGh0XvvzWAjYesUui/4ZbGaE5b6b8qsiGAkiEHQMnIJKzsWQzADQNiEf5Hyr/EwKK1aIuxv/sPc8YRriHAAdscBJv3wj+UjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLC4aUjAFDlHSUUpQu" }, "_episode_num": 3314, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00038000000000004697, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVXRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDCB8KMGBlECUhpRSlIwBbJRNZQGMAXSUR0Cvoidwm3OOdX2UKGgGaAloD0MIYfpeQ/CecUCUhpRSlGgVS4FoFkdAr6Tmt8uzyHV9lChoBmgJaA9DCDWXGww1tJ5AlIaUUpRoFU0+AmgWR0CvpnYE4ecQdX2UKGgGaAloD0MIfLYODvbtm0CUhpRSlGgVTQECaBZHQK+rMITGo751fZQoaAZoCWgPQwiDwMqhRemnQJSGlFKUaBVNSwNoFkdAr6/Sad+Xq3V9lChoBmgJaA9DCFcJFodT+Y5AlIaUUpRoFU1KAWgWR0Cvtl0FbFCLdX2UKGgGaAloD0MIJqjhWzgfqkCUhpRSlGgVTegDaBZHQK+51sIE8q51fZQoaAZoCWgPQwi0AG2r2WaXQJSGlFKUaBVNtgFoFkdAr8GmFnIyTXV9lChoBmgJaA9DCJGdt7HJZZpAlIaUUpRoFU0RAmgWR0CvxW1fVqetdX2UKGgGaAloD0MIKZSFr9f3p0CUhpRSlGgVTegDaBZHQK/KWX531SR1fZQoaAZoCWgPQwjBkUCDvU2UQJSGlFKUaBVNoQFoFkdAr9IhtgrpaHV9lChoBmgJaA9DCGdkkLv4L5NAlIaUUpRoFU1sAWgWR0Cv1ZKCg9NfdX2UKGgGaAloD0MIONkG7qDDp0CUhpRSlGgVTegDaBZHQK/ZSbfgrH51fZQoaAZoCWgPQwjNrnsr0hd0QJSGlFKUaBVLsmgWR0Cv4L5fdAPedX2UKGgGaAloD0MIhUAuceT6gkCUhpRSlGgVS/RoFkdAr+JKdH2AXnV9lChoBmgJaA9DCIRlbOjGDKhAlIaUUpRoFU3JA2gWR0Cv5RrSE12rdX2UKGgGaAloD0MIGHsvvihgckCUhpRSlGgVS4VoFkdAr+xYjQiRn3V9lChoBmgJaA9DCOj500ZVgZ9AlIaUUpRoFU1oAmgWR0Cv7fosRQJpdX2UKGgGaAloD0MIiKHVyZlicUCUhpRSlGgVS4ZoFkdAr/KklC1JDnV9lChoBmgJaA9DCH8yxoeZG3FAlIaUUpRoFUuIaBZHQK/zxJoTPB11fZQoaAZoCWgPQwiNmxpohhiiQJSGlFKUaBVNCANoFkdAr/WWnAIppnV9lChoBmgJaA9DCJF7urpjynBAlIaUUpRoFUuCaBZHQK/7aEZiuuB1fZQoaAZoCWgPQwhhpu1fWVhxQJSGlFKUaBVLh2gWR0Cv/IJfICEIdX2UKGgGaAloD0MIuAVLdRE+p0CUhpRSlGgVTegDaBZHQK/+kSOBDoh1fZQoaAZoCWgPQwh2w7ZFmQ2RQJSGlFKUaBVNdQFoFkdAsAMkRTS9d3V9lChoBmgJaA9DCKryPSNB2JpAlIaUUpRoFU0LAmgWR0CwBMROHnEEdX2UKGgGaAloD0MIUS6NX/gaeUCUhpRSlGgVS6BoFkdAsAbC2UjcEnV9lChoBmgJaA9DCJNRZRi3nZFAlIaUUpRoFU1wAWgWR0CwB4s/pt78dX2UKGgGaAloD0MI/fhLi3oieUCUhpRSlGgVS6BoFkdAsAj5F1B+nnV9lChoBmgJaA9DCBmPUgmHI6VAlIaUUpRoFU0zA2gWR0CwCf02gnMMdX2UKGgGaAloD0MIVyHlJ9XgikCUhpRSlGgVTSABaBZHQLANJQrc0tR1fZQoaAZoCWgPQwju6lVkjESmQJSGlFKUaBVNNQNoFkdAsBAWaG5+Y3V9lChoBmgJaA9DCOi8xi7RG3NAlIaUUpRoFUuLaBZHQLATI6kIomZ1fZQoaAZoCWgPQwiIghlT8O1zQJSGlFKUaBVLhWgWR0CwE7Rqj8DTdX2UKGgGaAloD0MIaCPXTblXmUCUhpRSlGgVTe4BaBZHQLAUb42CNCJ1fZQoaAZoCWgPQwhnX3mQxu2jQJSGlFKUaBVNxQJoFkdAsBab4CZF5XV9lChoBmgJaA9DCIocIm6GeqFAlIaUUpRoFU1dAmgWR0CwGXz/dZaFdX2UKGgGaAloD0MI2sU00z3VdECUhpRSlGgVS5NoFkdAsBvAOUdJa3V9lChoBmgJaA9DCN481SE3IHZAlIaUUpRoFUuVaBZHQLAcXQT238Z1fZQoaAZoCWgPQwif6Lrwg3lBQJSGlFKUaBVLG2gWR0CwHOsP4EfUdX2UKGgGaAloD0MIKENVTCVrc0CUhpRSlGgVS4poFkdAsB0WoYNy53V9lChoBmgJaA9DCIrkK4GUk3NAlIaUUpRoFUuLaBZHQLAdqX9BKL91fZQoaAZoCWgPQwgBNEqXvo2HQJSGlFKUaBVL+mgWR0CwHk0aQ3gldX2UKGgGaAloD0MIDf5+Mds6cECUhpRSlGgVS3VoFkdAsB9JDMNc4nV9lChoBmgJaA9DCJxQiIBDsYhAlIaUUpRoFU0EAWgWR0CwH9vseGO/dX2UKGgGaAloD0MIXHSy1LpSlUCUhpRSlGgVTXUBaBZHQLAhAb0e2eB1fZQoaAZoCWgPQwhYdVYL3L6RQJSGlFKUaBVNQwFoFkdAsCKMtz0Yj3V9lChoBmgJaA9DCPUR+MOfU5BAlIaUUpRoFU0oAWgWR0CwI+TErGzbdX2UKGgGaAloD0MILv8h/cYpkkCUhpRSlGgVTU0BaBZHQLAlKBZIQOF1fZQoaAZoCWgPQwhzY3rC8gqSQJSGlFKUaBVNOQFoFkdAsCaKfzz3AXV9lChoBmgJaA9DCFwDWyU4sY1AlIaUUpRoFU0FAWgWR0CwJ9LfUF0QdX2UKGgGaAloD0MIumqeI/ICkUCUhpRSlGgVTS0BaBZHQLAo7smv4dp1fZQoaAZoCWgPQwhAo3TpP4iZQJSGlFKUaBVN4wFoFkdAsCpFsnAqNXV9lChoBmgJaA9DCJjg1AdSY5RAlIaUUpRoFU1vAWgWR0CwLDR86V+rdX2UKGgGaAloD0MII4Wy8HVrjkCUhpRSlGgVTRkBaBZHQLAtrm+Cbtt1fZQoaAZoCWgPQwgUIuAQykuXQJSGlFKUaBVNiQFoFkdAsC7qUmlZYHV9lChoBmgJaA9DCIAPXrukWpJAlIaUUpRoFU0/AWgWR0CwMIUrTYukdX2UKGgGaAloD0MILPAV3bo1jkCUhpRSlGgVTRMBaBZHQLAx1hcJMQF1fZQoaAZoCWgPQwjACBozCcJyQJSGlFKUaBVLiGgWR0CwMurZFocrdX2UKGgGaAloD0MIvRqgNHTwmUCUhpRSlGgVTdMBaBZHQLAzqV3EAHV1fZQoaAZoCWgPQwhLWBtjh2mVQJSGlFKUaBVNgwFoFkdAsDWUWdmQKnV9lChoBmgJaA9DCKBrX0CPMZxAlIaUUpRoFU3/AWgWR0CwN0LCm/FjdX2UKGgGaAloD0MIZDvfT92oqECUhpRSlGgVTWEDaBZHQLA5lv5xiod1fZQoaAZoCWgPQwiMo3IThcujQJSGlFKUaBVNygJoFkdAsD0dUPxx1nV9lChoBmgJaA9DCEdYVMQJMJZAlIaUUpRoFU2NAWgWR0CwP+8khRqHdX2UKGgGaAloD0MIh/pd2Howm0CUhpRSlGgVTd4BaBZHQLBBo4OMERt1fZQoaAZoCWgPQwhPrb66CpGAQJSGlFKUaBVLxmgWR0CwQ346jnFHdX2UKGgGaAloD0MIWfePhWiFZkCUhpRSlGgVS1NoFkdAsERFLGrCFnV9lChoBmgJaA9DCINtxJMN6ZVAlIaUUpRoFU11AWgWR0CwRMUb961LdX2UKGgGaAloD0MIlGsKZMYwl0CUhpRSlGgVTcMBaBZHQLBGXnlXA/N1fZQoaAZoCWgPQwhWKqioeg9yQJSGlFKUaBVLgWgWR0CwSBS3XqZ/dX2UKGgGaAloD0MI2e4eoENNoECUhpRSlGgVTWQCaBZHQLBI38CgbqB1fZQoaAZoCWgPQwgEHhhA+B1rQJSGlFKUaBVLYmgWR0CwSyNFa0QcdX2UKGgGaAloD0MIRGlv8IWMi0CUhpRSlGgVTRUBaBZHQLBLoi9Iwud1fZQoaAZoCWgPQwgAqyNH+lamQJSGlFKUaBVNRgNoFkdAsE0PesPrfXV9lChoBmgJaA9DCB/2QgEbNoFAlIaUUpRoFUvgaBZHQLBQKhcJMQF1fZQoaAZoCWgPQwixwcJJmrxrQJSGlFKUaBVLZGgWR0CwUQjDKoycdX2UKGgGaAloD0MIBBvXv2uGaUCUhpRSlGgVS19oFkdAsFFzIhhYvHV9lChoBmgJaA9DCIIbKVvMKatAlIaUUpRoFU3oA2gWR0CwUlQI6bONdX2UKGgGaAloD0MIYf4KmdsIlECUhpRSlGgVTYMBaBZHQLBWMoC+10F1fZQoaAZoCWgPQwj8NsR47VWNQJSGlFKUaBVNPgFoFkdAsFfJhkRSP3V9lChoBmgJaA9DCBxBKsVuFKpAlIaUUpRoFU3oA2gWR0CwWXsohIOIdX2UKGgGaAloD0MIW0QUk9dxjkCUhpRSlGgVTUsBaBZHQLBdU4+8oQZ1fZQoaAZoCWgPQwjZB1kWXMGWQJSGlFKUaBVNxgFoFkdAsF7DO2RaHXV9lChoBmgJaA9DCJMdG4GoDapAlIaUUpRoFU3oA2gWR0CwYOlnmJWOdX2UKGgGaAloD0MIxf6yeyrXoECUhpRSlGgVTbcCaBZHQLBk3WoFV1h1fZQoaAZoCWgPQwgboDTUaF+CQJSGlFKUaBVL0mgWR0CwZ3okzGgjdX2UKGgGaAloD0MI/G66ZYfUjUCUhpRSlGgVTSUBaBZHQLBoZEEC/491fZQoaAZoCWgPQwimme510oZ9QJSGlFKUaBVLr2gWR0CwaYpkoWpIdX2UKGgGaAloD0MI/Bhz19KFh0CUhpRSlGgVTRIBaBZHQLBqUMqz7dl1fZQoaAZoCWgPQwgYWwhy0OZsQJSGlFKUaBVLdWgWR0Cwa17212JSdX2UKGgGaAloD0MI3LsGfUk4hECUhpRSlGgVS+VoFkdAsGvp2/zreXV9lChoBmgJaA9DCALU1LL1QX9AlIaUUpRoFUvOaBZHQLBs2dGiHqN1fZQoaAZoCWgPQwgLtaZ5J/GAQJSGlFKUaBVL5mgWR0Cwbbc0YTCcdX2UKGgGaAloD0MIlxx3Ssf+fECUhpRSlGgVS89oFkdAsG6otAcDKnV9lChoBmgJaA9DCPDeUWNCM2ZAlIaUUpRoFUtXaBZHQLBvcvnr6cl1fZQoaAZoCWgPQwjSb18HzvdpQJSGlFKUaBVLZGgWR0Cwb9FchTwVdX2UKGgGaAloD0MIM9yAz8d6qECUhpRSlGgVTegDaBZHQLBws93KSxJ1fZQoaAZoCWgPQwiIodXJmUuqQJSGlFKUaBVNogNoFkdAsHTIU1yeZ3V9lChoBmgJaA9DCPlKICVuHapAlIaUUpRoFU2eA2gWR0Cwe2KVt4zKdWUu" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 990386, "buffer_size": 1, "batch_size": 100, "learning_starts": 10000, "tau": 0.005, "gamma": 0.99, "gradient_steps": -1, "optimize_memory_usage": false, "replay_buffer_class": { ":type:": "", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "", "add": "", "sample": "", "_get_samples": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7feb8e8e6b00>" }, "replay_buffer_kwargs": {}, "train_freq": { ":type:": "", ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu" }, "use_sde_at_warmup": false, "policy_delay": 1, "target_noise_clip": 0.0, "target_policy_noise": 0.1, "actor_batch_norm_stats": [], "critic_batch_norm_stats": [], "actor_batch_norm_stats_target": [], "critic_batch_norm_stats_target": [] }