{ "policy_class": { ":type:": "", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=", "__module__": "stable_baselines3.td3.policies", "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "", "_build": "", "_get_constructor_parameters": "", "make_actor": "", "make_critic": "", "forward": "", "_predict": "", "set_training_mode": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9551659040>" }, "verbose": 1, "policy_kwargs": {}, "observation_space": { ":type:": "", ":serialized:": "gAWVFQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLC4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwuFlIwBQ5R0lFKUjARoaWdolGgSKJZYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLC4WUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYLAAAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwuFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCwAAAAAAAAAAAAAAAAAAAAAAAJRoIUsLhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float64", "_shape": [ 11 ], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVGAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "dtype": "float32", "_shape": [ 3 ], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": "RandomState(MT19937)" }, "n_envs": 1, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": { ":type:": "", ":serialized:": "gAWVCgEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwOFlIwBQ5R0lFKUjAZfc2lnbWGUaAgolhgAAAAAAAAAmpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/lGgPSwOFlGgTdJRSlHViLg==", "_mu": "[0. 0. 0.]", "_sigma": "[0.1 0.1 0.1]" }, "start_time": 1676730946710098105, "learning_rate": { ":type:": "", ":serialized:": "gAWVjwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL3FnYWxsb3VlZGVjL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" }, "tensorboard_log": "runs/Hopper-v3__td3__2353405792__1676730944/Hopper-v3", "lr_schedule": { ":type:": "", ":serialized:": "gAWVjwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL3FnYWxsb3VlZGVjL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" }, "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg==" }, "_last_original_obs": { ":type:": "", ":serialized:": "gAWVzQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZYAAAAAAAAACrjegZtOfM/CMZcRp+mv78+CJcOEamQv+uSO7Ehrtu/Gc0a2MS44D9jfCouFDHlP4dIyfWY59i/hL1Q5oGu8L/IRUvW6BTxv4b+/gksX/y/2v1RfR6L9j+UjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLC4aUjAFDlHSUUpQu" }, "_episode_num": 2687, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiBOYTlOVpUCUhpRSlIwBbJRN9wKMAXSUR0CxTfYTTOPedX2UKGgGaAloD0MI8db5tzMYrECUhpRSlGgVTegDaBZHQLFS2sWO6up1fZQoaAZoCWgPQwgcsoF0gQWsQJSGlFKUaBVN6ANoFkdAsVerB/I8yXV9lChoBmgJaA9DCDiDv19UqKtAlIaUUpRoFU3oA2gWR0CxXHszImw8dX2UKGgGaAloD0MIsWoQ5naNq0CUhpRSlGgVTegDaBZHQLFhR08vEjx1fZQoaAZoCWgPQwh23VuRWDqcQJSGlFKUaBVN/QFoFkdAsWO7erMkhXV9lChoBmgJaA9DCHHMsidRr6tAlIaUUpRoFU3oA2gWR0CxaJL+98JEdX2UKGgGaAloD0MI2ln0Tu0UrECUhpRSlGgVTegDaBZHQLFtZRl6JIl1fZQoaAZoCWgPQwhTliGOvVurQJSGlFKUaBVN6ANoFkdAsXIxIvrWy3V9lChoBmgJaA9DCOWdQxmC5KtAlIaUUpRoFU3oA2gWR0Cxdt35BTn8dX2UKGgGaAloD0MI6DI1Cd4IrECUhpRSlGgVTegDaBZHQLF7JI6Kcd51fZQoaAZoCWgPQwjyeFp+2HSrQJSGlFKUaBVN6ANoFkdAsX9s/Vy3kXV9lChoBmgJaA9DCJC93v2JmKtAlIaUUpRoFU3oA2gWR0Cxg+Z0r9VFdX2UKGgGaAloD0MIB9MwfNzUq0CUhpRSlGgVTegDaBZHQLGIsGdZq211fZQoaAZoCWgPQwjEIoYdHtOrQJSGlFKUaBVN6ANoFkdAsY1ywA2hqXV9lChoBmgJaA9DCPexgt+e1atAlIaUUpRoFU3oA2gWR0CxkjEDQqqfdX2UKGgGaAloD0MIwOeHEUolrECUhpRSlGgVTegDaBZHQLGW+XzDn/11fZQoaAZoCWgPQwhenWNADlyrQJSGlFKUaBVN6ANoFkdAsZvCjmCAc3V9lChoBmgJaA9DCN+mP/up+6tAlIaUUpRoFU3oA2gWR0CxoIxqj8DTdX2UKGgGaAloD0MI8IY0KsDZq0CUhpRSlGgVTegDaBZHQLGlXN4JNTN1fZQoaAZoCWgPQwi6E+y/BperQJSGlFKUaBVN6ANoFkdAsao3+4smOXV9lChoBmgJaA9DCKAbmrIjgKtAlIaUUpRoFU3oA2gWR0CxrvsK9f1IdX2UKGgGaAloD0MI9raZCrEhmUCUhpRSlGgVTcABaBZHQLG1eNOdoWZ1fZQoaAZoCWgPQwhskh/xo/mrQJSGlFKUaBVN6ANoFkdAsbo7Mr3CbnV9lChoBmgJaA9DCMFu2LYw8KtAlIaUUpRoFU3oA2gWR0Cxvv0xREWqdX2UKGgGaAloD0MIaa1oc7wTrECUhpRSlGgVTegDaBZHQLHD06yB06p1fZQoaAZoCWgPQwiWlpF616+rQJSGlFKUaBVN6ANoFkdAsciwC9ytFXV9lChoBmgJaA9DCLXiGwp/76tAlIaUUpRoFU3oA2gWR0CxzaEdeY2LdX2UKGgGaAloD0MICcVW0Gzcq0CUhpRSlGgVTegDaBZHQLHSo6ab4Jx1fZQoaAZoCWgPQwgfaXBb27SrQJSGlFKUaBVN6ANoFkdAsdeRPhybQXV9lChoBmgJaA9DCOAO1CmvDqxAlIaUUpRoFU3oA2gWR0Cx3Hxo24usdX2UKGgGaAloD0MIx3+BIBj4q0CUhpRSlGgVTegDaBZHQLHhZtCAtnR1fZQoaAZoCWgPQwghy4KJtx2sQJSGlFKUaBVN6ANoFkdAseZPrqt5lnV9lChoBmgJaA9DCG0bRkHYLKxAlIaUUpRoFU3oA2gWR0Cx6zUd/8VIdX2UKGgGaAloD0MIc/G3PQEYrECUhpRSlGgVTegDaBZHQLHwB51vETB1fZQoaAZoCWgPQwhzhXe54DCsQJSGlFKUaBVN6ANoFkdAsfT4aESM+HV9lChoBmgJaA9DCOXRjbC4vKtAlIaUUpRoFU3oA2gWR0Cx+fq9PDYRdX2UKGgGaAloD0MIVn2uthpQrECUhpRSlGgVTegDaBZHQLH+0smv4dp1fZQoaAZoCWgPQwjGhm72px+sQJSGlFKUaBVN6ANoFkdAsgPTHXEqD3V9lChoBmgJaA9DCFmK5CsR76tAlIaUUpRoFU3oA2gWR0CyCKBX8wYcdX2UKGgGaAloD0MIguFcw6xFoUCUhpRSlGgVTXgCaBZHQLILnHT7VKB1fZQoaAZoCWgPQwhyFYvfZBWsQJSGlFKUaBVN6ANoFkdAsg/ZGOMl1XV9lChoBmgJaA9DCCo5J/a4watAlIaUUpRoFU3oA2gWR0CyFBKDwpfAdX2UKGgGaAloD0MI91j60K0HrECUhpRSlGgVTegDaBZHQLIYahE0BOp1fZQoaAZoCWgPQwji578HT+irQJSGlFKUaBVN6ANoFkdAsh0p8ma6SXV9lChoBmgJaA9DCA8pBkjEw6tAlIaUUpRoFU3oA2gWR0CyIefF3pwCdX2UKGgGaAloD0MIQ+GzdXB6l0CUhpRSlGgVTbsBaBZHQLIj/ynUDuB1fZQoaAZoCWgPQwjPgeUIKQKsQJSGlFKUaBVN6ANoFkdAsijKFev6j3V9lChoBmgJaA9DCGZpp+YSuqtAlIaUUpRoFU3oA2gWR0CyMgVR1oxpdX2UKGgGaAloD0MIinQ/p3jiq0CUhpRSlGgVTegDaBZHQLI23BI4EOl1fZQoaAZoCWgPQwhAh/nywg+sQJSGlFKUaBVN6ANoFkdAsjuvOE/SpnV9lChoBmgJaA9DCILn3sOFY6tAlIaUUpRoFU3oA2gWR0CyQHswtapxdX2UKGgGaAloD0MIZqAy/h0PqUCUhpRSlGgVTYgDaBZHQLJE0OlO45N1fZQoaAZoCWgPQwhGzsKe1pWrQJSGlFKUaBVN6ANoFkdAskmt5X2du3V9lChoBmgJaA9DCDo/xXG4qqtAlIaUUpRoFU3oA2gWR0CyToAob4rSdX2UKGgGaAloD0MIdT48S9j8q0CUhpRSlGgVTegDaBZHQLJTVAI6bON1fZQoaAZoCWgPQwiQv7SoJ+urQJSGlFKUaBVN6ANoFkdAslhAjSofjnV9lChoBmgJaA9DCAdDHVaY0atAlIaUUpRoFU3oA2gWR0CyXSaWcBludX2UKGgGaAloD0MI3L3cJ+/3q0CUhpRSlGgVTegDaBZHQLJiJD50r9V1fZQoaAZoCWgPQwiGAyFZgKKrQJSGlFKUaBVN6ANoFkdAsmcGqzZ6EHV9lChoBmgJaA9DCJZZhGLr96tAlIaUUpRoFU3oA2gWR0Cya+5DE3sHdX2UKGgGaAloD0MIejVAaSgZrECUhpRSlGgVTegDaBZHQLJw0dGAkLR1fZQoaAZoCWgPQwhxPQrXM7urQJSGlFKUaBVN6ANoFkdAsnWy0hNdq3V9lChoBmgJaA9DCG4zFeKhVKFAlIaUUpRoFU1/AmgWR0CyeNPiHZbqdX2UKGgGaAloD0MI2Lyqs5Kap0CUhpRSlGgVTUYDaBZHQLJ85bs4T9N1fZQoaAZoCWgPQwi/gF64k0msQJSGlFKUaBVN6ANoFkdAsoHZeu3c6HV9lChoBmgJaA9DCHDP86dl5qtAlIaUUpRoFU3oA2gWR0CyhrRXr+o+dX2UKGgGaAloD0MIesa+ZIPoq0CUhpRSlGgVTegDaBZHQLKLkSRr8BN1fZQoaAZoCWgPQwij6IGPCdqrQJSGlFKUaBVN6ANoFkdAspBswblzVHV9lChoBmgJaA9DCDqUoSo21KtAlIaUUpRoFU3oA2gWR0CylUoyCWeIdX2UKGgGaAloD0MIVFVoINbFlUCUhpRSlGgVTZYBaBZHQLKXQ3jMmnh1fZQoaAZoCWgPQwhmTSzwTe6rQJSGlFKUaBVN6ANoFkdAspwd3+uNgnV9lChoBmgJaA9DCDNv1XUY5qtAlIaUUpRoFU3oA2gWR0CyoMnKB/ZvdX2UKGgGaAloD0MIsW1RZsOkq0CUhpRSlGgVTegDaBZHQLKlIh9srNJ1fZQoaAZoCWgPQwjGqGvtld2rQJSGlFKUaBVN6ANoFkdAsqzA03wTd3V9lChoBmgJaA9DCFWmmIMYlatAlIaUUpRoFU3oA2gWR0Cysadmg8KYdX2UKGgGaAloD0MI/I9Mh161q0CUhpRSlGgVTegDaBZHQLK2htJWeYl1fZQoaAZoCWgPQwhKm6p7fBenQJSGlFKUaBVNRQNoFkdAsrqYnb7CSHV9lChoBmgJaA9DCJMa2gCkvatAlIaUUpRoFU3oA2gWR0Cyv3cSPEKmdX2UKGgGaAloD0MIi/7QzLuvq0CUhpRSlGgVTegDaBZHQLLEU5o4+8p1fZQoaAZoCWgPQwhhUnx8EoirQJSGlFKUaBVN6ANoFkdAssk2WszVMHV9lChoBmgJaA9DCCkEcokroKtAlIaUUpRoFU3oA2gWR0CyzhvACW/rdX2UKGgGaAloD0MIVcA9zxdQq0CUhpRSlGgVTegDaBZHQLLS48+Royt1fZQoaAZoCWgPQwjh0Fs8/D+rQJSGlFKUaBVN6ANoFkdAsteexTsIFHV9lChoBmgJaA9DCMr7OJqTX6tAlIaUUpRoFU3oA2gWR0Cy3Gx9kSVXdX2UKGgGaAloD0MIfTz03fWdq0CUhpRSlGgVTegDaBZHQLLhRyqMm4R1fZQoaAZoCWgPQwgoYhHD7pqrQJSGlFKUaBVN6ANoFkdAsuYgJswcpHV9lChoBmgJaA9DCJKVXwaDjqtAlIaUUpRoFU3oA2gWR0Cy6vly/9HddX2UKGgGaAloD0MI8zy4O1vYq0CUhpRSlGgVTegDaBZHQLLv1tTkyUN1fZQoaAZoCWgPQwiDhv4JHrerQJSGlFKUaBVN6ANoFkdAsvSzxkNF0HV9lChoBmgJaA9DCF+WdmpetatAlIaUUpRoFU3oA2gWR0Cy+XBFd9lVdX2UKGgGaAloD0MIfQOTG0XZq0CUhpRSlGgVTegDaBZHQLL+Ltzjm0V1fZQoaAZoCWgPQwi3e7lP5uCrQJSGlFKUaBVN6ANoFkdAswLwSCe2/nV9lChoBmgJaA9DCKZDp+dlzKtAlIaUUpRoFU3oA2gWR0CzB7XZf2K3dX2UKGgGaAloD0MIQrCqXvb1q0CUhpRSlGgVTegDaBZHQLMMg0+C9RJ1fZQoaAZoCWgPQwj+8PPf0+qrQJSGlFKUaBVN6ANoFkdAsxFQy0rsjXV9lChoBmgJaA9DCNiBc0b086tAlIaUUpRoFU3oA2gWR0CzFiGTC+DfdX2UKGgGaAloD0MIaRt/ohrQq0CUhpRSlGgVTegDaBZHQLMa86vaDf51fZQoaAZoCWgPQwgPtAJDDqmrQJSGlFKUaBVN6ANoFkdAsx/EQ176YXV9lChoBmgJaA9DCHNoke08+qtAlIaUUpRoFU3oA2gWR0CzJJVwcYIjdWUu" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 990000, "buffer_size": 1, "batch_size": 256, "learning_starts": 10000, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": { ":type:": "", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "", "add": "", "sample": "", "_get_samples": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9551264e00>" }, "replay_buffer_kwargs": {}, "train_freq": { ":type:": "", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu" }, "use_sde_at_warmup": false, "policy_delay": 2, "target_noise_clip": 0.5, "target_policy_noise": 0.2, "actor_batch_norm_stats": [], "critic_batch_norm_stats": [], "actor_batch_norm_stats_target": [], "critic_batch_norm_stats_target": [] }