{ "policy_class": { ":type:": "", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=", "__module__": "stable_baselines3.td3.policies", "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "", "_build": "", "_get_constructor_parameters": "", "make_actor": "", "make_critic": "", "forward": "", "_predict": "", "set_training_mode": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdcda3f1500>" }, "verbose": 1, "policy_kwargs": { "net_arch": [ 400, 300 ] }, "observation_space": { ":type:": "", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [ 3 ], "low": "[-1. -1. -8.]", "high": "[1. 1. 8.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [ 1 ], "low": "[-2.]", "high": "[2.]", "bounded_below": "[ True]", "bounded_above": "[ True]", "_np_random": "RandomState(MT19937)" }, "n_envs": 1, "num_timesteps": 20000, "_total_timesteps": 20000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": { ":type:": "", ":serialized:": "gAWV6gAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAYWUjAFDlHSUUpSMBl9zaWdtYZRoCCiWCAAAAAAAAACamZmZmZm5P5RoD0sBhZRoE3SUUpR1Yi4=", "_mu": "[0.]", "_sigma": "[0.1]" }, "start_time": 1670944267449862132, "learning_rate": { ":type:": "", ":serialized:": "gAWV/QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL3FnYWxsb3VlZGVjL3JsLWJhc2VsaW5lczMtem9vL2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxlL2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4=" }, "tensorboard_log": "runs/Pendulum-v1__td3__3412888169__1670944265/Pendulum-v1", "lr_schedule": { ":type:": "", ":serialized:": "gAWV/QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL3FnYWxsb3VlZGVjL3JsLWJhc2VsaW5lczMtem9vL2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxlL2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4=" }, "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg==" }, "_last_original_obs": { ":type:": "", ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAHvqfz/+6dE8J28jPpSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4=" }, "_episode_num": 100, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImpguxFpzkcCUhpRSlIwBbJRLyIwBdJRHP+xd2xIJ7cB1fZQoaAZoCWgPQwjiBnx+yMWWwJSGlFKUaBVLyGgWRz/tTpgTh5xBdX2UKGgGaAloD0MI9DRgkJQZlMCUhpRSlGgVS8hoFkc/7j48EFGG23V9lChoBmgJaA9DCN+I7lm31pXAlIaUUpRoFUvIaBZHP+8thd+ocaR1fZQoaAZoCWgPQwhSt7OvfEqawJSGlFKUaBVLyGgWRz/wEjLSuyNXdX2UKGgGaAloD0MIBaipZQvki8CUhpRSlGgVS8hoFkc/8IkWykbgj3V9lChoBmgJaA9DCCOCcXCpZZTAlIaUUpRoFUvIaBZHP/EAJLM9r451fZQoaAZoCWgPQwjMRuf8VHGLwJSGlFKUaBVLyGgWRz/xdx2jfvWpdX2UKGgGaAloD0MIRgw7jEnWl8CUhpRSlGgVS8hoFkc/8fCemNzbOHV9lChoBmgJaA9DCGR0QBLWX5XAlIaUUpRoFUvIaBZHP/JnWrfcesB1fZQoaAZoCWgPQwhsBrggu7eQwJSGlFKUaBVLyGgWRz/y3lnyup0fdX2UKGgGaAloD0MIvRk1X4W4lsCUhpRSlGgVS8hoFkc/81UfgaWHDnV9lChoBmgJaA9DCAb3Ax740YrAlIaUUpRoFUvIaBZHP/POTaCcwxp1fZQoaAZoCWgPQwjuW60TR7mZwJSGlFKUaBVLyGgWRz/0RY7q6e5GdX2UKGgGaAloD0MISbvRx1wyi8CUhpRSlGgVS8hoFkc/9LwYtQKrrHV9lChoBmgJaA9DCAmnBS96K5zAlIaUUpRoFUvIaBZHP/UyyUs4DLd1fZQoaAZoCWgPQwiGjh1UUgmTwJSGlFKUaBVLyGgWRz/1q4c3l0YCdX2UKGgGaAloD0MImSoYlaQwmcCUhpRSlGgVS8hoFkc/9iJ2t+1Bt3V9lChoBmgJaA9DCKkVpu+1yJXAlIaUUpRoFUvIaBZHP/aZlFtsN2F1fZQoaAZoCWgPQwjIzXADXj2OwJSGlFKUaBVLyGgWRz/3EGu9vjwQdX2UKGgGaAloD0MIOGivPm4YlcCUhpRSlGgVS8hoFkc/94o+fRNRFnV9lChoBmgJaA9DCP+Xa9HiZ5bAlIaUUpRoFUvIaBZHP/gBQN0/4Zd1fZQoaAZoCWgPQwh6HAbz18iLwJSGlFKUaBVLyGgWRz/4eGGmDUVjdX2UKGgGaAloD0MI0CnIz0aLi8CUhpRSlGgVS8hoFkc/+O+mFajesXV9lChoBmgJaA9DCP/mxYkPk5nAlIaUUpRoFUvIaBZHP/lpvxYq5LB1fZQoaAZoCWgPQwioHf6azLCQwJSGlFKUaBVLyGgWRz/54oRZlnRLdX2UKGgGaAloD0MIjdE6qhp/mcCUhpRSlGgVS8hoFkc/+ln7Hhjvu3V9lChoBmgJaA9DCODZHr2BfJzAlIaUUpRoFUvIaBZHP/rRQJokAxV1fZQoaAZoCWgPQwhpOdBDLa6QwJSGlFKUaBVLyGgWRz/7SnpB5X2edX2UKGgGaAloD0MI43DmV7MkmsCUhpRSlGgVS8hoFkc/+8F8ohIOH3V9lChoBmgJaA9DCMufbwu23I/AlIaUUpRoFUvIaBZHP/w4XGff4yp1fZQoaAZoCWgPQwh2G9R+iyeLwJSGlFKUaBVLyGgWRz/8rxd6cAindX2UKGgGaAloD0MIVcGopG4ujsCUhpRSlGgVS8hoFkc//ShakhzNlnV9lChoBmgJaA9DCCzYRjzZdo7AlIaUUpRoFUvIaBZHP/2fhuO0b991fZQoaAZoCWgPQwju7CsPkm+OwJSGlFKUaBVLyGgWRz/+FqesgdOqdX2UKGgGaAloD0MIqinJOgzEk8CUhpRSlGgVS8hoFkc//o1KoQ4CIXV9lChoBmgJaA9DCI7pCUts/ZzAlIaUUpRoFUvIaBZHP/8GXokiUxF1fZQoaAZoCWgPQwgwgVt3g8ScwJSGlFKUaBVLyGgWRz//fV7Qb+98dX2UKGgGaAloD0MIZsBZSqZumsCUhpRSlGgVS8hoFkc///RzBAOav3V9lChoBmgJaA9DCAb2mEgpbI7AlIaUUpRoFUvIaBZHQAA1p9JBgNR1fZQoaAZoCWgPQwj8qlyo7PWRwJSGlFKUaBVLyGgWR0AAcj1PFefJdX2UKGgGaAloD0MIqKrQQIx3icCUhpRSlGgVS8hoFkdAAK3FUADJVHV9lChoBmgJaA9DCGywcJLmC4vAlIaUUpRoFUvIaBZHQADpOerdWQx1fZQoaAZoCWgPQwj0pExqOICXwJSGlFKUaBVLyGgWR0ABJLZi/fwadX2UKGgGaAloD0MIPPn02LYum8CUhpRSlGgVS8hoFkdAAWGKQ7tAs3V9lChoBmgJaA9DCCRh307iAJTAlIaUUpRoFUvIaBZHQAGdQGfPHDJ1fZQoaAZoCWgPQwjQJodP6ryYwJSGlFKUaBVLyGgWR0AB2QEIPbwjdX2UKGgGaAloD0MIdoh/2PLAjcCUhpRSlGgVS8hoFkdAAhSVGCqZMXV9lChoBmgJaA9DCMJoVrZvEZHAlIaUUpRoFUvIaBZHQAJRQBPsRg91fZQoaAZoCWgPQwi/RSdLLUSOwJSGlFKUaBVLyGgWR0ACjLfUF0PpdX2UKGgGaAloD0MIqtbCLPSQjsCUhpRSlGgVS8hoFkdABP5nDiwSrnV9lChoBmgJaA9DCN0LzApVBpvAlIaUUpRoFUvIaBZHQAumPxQSBbx1fZQoaAZoCWgPQwjy0k1iEESZwJSGlFKUaBVLyGgWR0ARI1VHWjGldX2UKGgGaAloD0MIKGTnbVxKlMCUhpRSlGgVS8hoFkdAFF2wV0tAcHV9lChoBmgJaA9DCGX+0TfpzZfAlIaUUpRoFUvIaBZHQBei6tknTiN1fZQoaAZoCWgPQwibHhSU0iaYwJSGlFKUaBVLyGgWR0Aa6SJTER8MdX2UKGgGaAloD0MIx2Rx/4HwlsCUhpRSlGgVS8hoFkdAHjJng5zYEnV9lChoBmgJaA9DCAcoDTXqS5fAlIaUUpRoFUvIaBZHQCDBljEvTPV1fZQoaAZoCWgPQwgF+G7zRqWVwJSGlFKUaBVLyGgWR0AieCg9Net0dX2UKGgGaAloD0MIW3nJ/+RblMCUhpRSlGgVS8hoFkdAJC+0ojOcD3V9lChoBmgJaA9DCCvCTUZ1ppfAlIaUUpRoFUvIaBZHQCXqiCaqjrR1fZQoaAZoCWgPQwggelImdViSwJSGlFKUaBVLyGgWR0AnlZpztCzDdX2UKGgGaAloD0MIYmcKnSdykcCUhpRSlGgVS8hoFkdAKTe4kNWluXV9lChoBmgJaA9DCOyJrgtfNJXAlIaUUpRoFUvIaBZHQCrbMgU1yeZ1fZQoaAZoCWgPQwg9u3zrw6+QwJSGlFKUaBVLyGgWR0AsgNFz+3pfdX2UKGgGaAloD0MIdNGQ8ShxkMCUhpRSlGgVS8hoFkdALihltj0+T3V9lChoBmgJaA9DCC2vXG+bUJDAlIaUUpRoFUvIaBZHQC/MW43FUAF1fZQoaAZoCWgPQwhJopdRbAhxwJSGlFKUaBVLyGgWR0AwtWvr4WUKdX2UKGgGaAloD0MIAi1dwbbYYMCUhpRSlGgVS8hoFkdAMYUmUnogWHV9lChoBmgJaA9DCHwrEhPUABjAlIaUUpRoFUvIaBZHQDJT003wTdt1fZQoaAZoCWgPQwj8prBSsaaXwJSGlFKUaBVLyGgWR0AzJNWEK3NLdX2UKGgGaAloD0MId06zQDv3YcCUhpRSlGgVS8hoFkdAM/aMR6F/QXV9lChoBmgJaA9DCI9uhEUFt3vAlIaUUpRoFUvIaBZHQDTJakhzNll1fZQoaAZoCWgPQwg7cTlegY93wJSGlFKUaBVLyGgWR0A1m4p+c6NmdX2UKGgGaAloD0MIBHY1eUogccCUhpRSlGgVS8hoFkdANm7Ub1h9cHV9lChoBmgJaA9DCKgavRqgqGDAlIaUUpRoFUvIaBZHQDdAc1fmcON1fZQoaAZoCWgPQwjTaHIxBpdfwJSGlFKUaBVLyGgWR0A4G+6iCaqkdX2UKGgGaAloD0MI5DCYv0Im9L+UhpRSlGgVS8hoFkdAOPd1U2kzoHV9lChoBmgJaA9DCONPVDYswW7AlIaUUpRoFUvIaBZHQDnTuBtk4FR1fZQoaAZoCWgPQwhKQiJtYx9wwJSGlFKUaBVLyGgWR0A6qUZeiSJTdX2UKGgGaAloD0MIsfm4NlRsDcCUhpRSlGgVS8hoFkdAO3rwrlNlAnV9lChoBmgJaA9DCNxoAG+BhV7AlIaUUpRoFUvIaBZHQDxL/VAiV0N1fZQoaAZoCWgPQwgvMZbpF7V1wJSGlFKUaBVLyGgWR0A9Hgm7aqS6dX2UKGgGaAloD0MIKZZbWg3AXsCUhpRSlGgVS8hoFkdAPe/IS13MZHV9lChoBmgJaA9DCKxSeqYXWG3AlIaUUpRoFUvIaBZHQD7Bc/t6X0J1fZQoaAZoCWgPQwhR9wFIbaVfwJSGlFKUaBVLyGgWR0A/kO2y9mHydX2UKGgGaAloD0MIHLeYnxucbsCUhpRSlGgVS8hoFkdAQDA6dUbT+nV9lChoBmgJaA9DCMcqpWd6AmDAlIaUUpRoFUvIaBZHQECXp22XsxB1fZQoaAZoCWgPQwjd71AU6H1fwJSGlFKUaBVLyGgWR0BBAGtyPuG9dX2UKGgGaAloD0MIWi2wx0SMX8CUhpRSlGgVS8hoFkdAQWlELH+6y3V9lChoBmgJaA9DCCdnKO54t27AlIaUUpRoFUvIaBZHQEHSPK+zt1J1fZQoaAZoCWgPQwgukKD4sfluwJSGlFKUaBVLyGgWR0BCO5BcAzYVdX2UKGgGaAloD0MIBI2ZRL3iX8CUhpRSlGgVS8hoFkdAQqbErGza9XV9lChoBmgJaA9DCGRXWkbqw1/AlIaUUpRoFUvIaBZHQEMQYR/ViF11fZQoaAZoCWgPQwjYSBKE62J2wJSGlFKUaBVLyGgWR0BDe9jG1hLHdX2UKGgGaAloD0MIXkpdMo4RXcCUhpRSlGgVS8hoFkdAQ+fVwxWT5nV9lChoBmgJaA9DCC7kEdzI7GzAlIaUUpRoFUvIaBZHQERY3gDRtxd1fZQoaAZoCWgPQwheZ0P+mfJfwJSGlFKUaBVLyGgWR0BExVopQUHqdX2UKGgGaAloD0MIAYkmUETAdcCUhpRSlGgVS8hoFkdARS8dvKlpGnV9lChoBmgJaA9DCEpE+BdBQwHAlIaUUpRoFUvIaBZHQEWXlSS/0ul1ZS4=" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 10000, "buffer_size": 1, "batch_size": 100, "learning_starts": 10000, "tau": 0.005, "gamma": 0.98, "gradient_steps": -1, "optimize_memory_usage": false, "replay_buffer_class": { ":type:": "", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "", "add": "", "sample": "", "_get_samples": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdcda3e4380>" }, "replay_buffer_kwargs": {}, "train_freq": { ":type:": "", ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu" }, "use_sde_at_warmup": false, "policy_delay": 2, "target_noise_clip": 0.5, "target_policy_noise": 0.2, "actor_batch_norm_stats": [], "critic_batch_norm_stats": [], "actor_batch_norm_stats_target": [], "critic_batch_norm_stats_target": [] }