--- library_name: stable-baselines3 tags: - PandaPush-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: TQC results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaPush-v1 type: PandaPush-v1 metrics: - type: mean_reward value: -6.80 +/- 2.09 name: mean_reward verified: false --- # **TQC** Agent playing **PandaPush-v1** This is a trained model of a **TQC** agent playing **PandaPush-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo tqc --env PandaPush-v1 -orga qgallouedec -f logs/ python -m rl_zoo3.enjoy --algo tqc --env PandaPush-v1 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo tqc --env PandaPush-v1 -orga qgallouedec -f logs/ python -m rl_zoo3.enjoy --algo tqc --env PandaPush-v1 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo tqc --env PandaPush-v1 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo tqc --env PandaPush-v1 -f logs/ -orga qgallouedec ``` ## Hyperparameters ```python OrderedDict([('batch_size', 2048), ('buffer_size', 1000000), ('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'), ('gamma', 0.95), ('gradient_steps', -1), ('learning_rate', 0.001), ('n_envs', 2), ('n_timesteps', 1000000.0), ('policy', 'MultiInputPolicy'), ('policy_kwargs', 'dict(net_arch=[512, 512, 512], n_critics=2)'), ('replay_buffer_class', 'HerReplayBuffer'), ('replay_buffer_kwargs', "dict( online_sampling=True, goal_selection_strategy='future', " 'n_sampled_goal=4, )'), ('tau', 0.05), ('normalize', False)]) ``` # Environment Arguments ```python {'render': True} ```