File size: 1,486 Bytes
d3480d5 6494969 7db29b4 6494969 56af82e 7db29b4 6494969 60e7bbf 6494969 7db29b4 6494969 8a96d18 6494969 7db29b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: apache-2.0
---
# DiffTumor
The Singularity container is designed for the prediction of abdominal tumors, specifically targeting the liver, pancreas, and kidneys. It utilizes a segmentation model sourced from [DiffTumor](https://github.com/MrGiovanni/DiffTumor).
# Instructions
### 1-Download
Download the singularity container.
```
wget https://huggingface.co/qicq1c/DiffTumor/resolve/main/difftumor_final.sif
```
### 2-Data preparation
This is how `inputs_data` organizes
```
$inputs_data/
βββ case00001.nii.gz
βββ case00002.nii.gz
βββ case00003.nii.gz
βββ case000xx.nii.gz
βββ ...
βββ case10000.nii.gz
```
### 3-Inference
You can directly perform inference on your own data. Simply modify inputs_data to reflect your data path and adjust outputs_data to specify the desired output location for the segmentation results.
```
SINGULARITYENV_CUDA_VISIBLE_DEVICES=0 singularity run --nv -B $inputs_data:/workspace/inputs -B $outputs_data:/workspace/outputs difftumor.sif
```
This is how `outputs_data` organizes
```
$outputs_data/
βββ case00001
βββ case00002
βββ case00003
βββ ct.nii.gz
βββ predictions
βββ liver.nii.gz
βββ pancreas.nii.gz
βββ kidney.nii.gz
βββ liver_tumor.nii.gz
βββ pancreas_tumor.nii.gz
βββ kidney_tumor.nii.gz
```
|