File size: 1,486 Bytes
d3480d5
 
 
6494969
7db29b4
6494969
56af82e
7db29b4
 
 
 
 
6494969
60e7bbf
6494969
7db29b4
 
 
 
 
 
 
 
 
 
 
 
 
 
6494969
8a96d18
6494969
 
7db29b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
license: apache-2.0
---

# DiffTumor

The Singularity container is designed for the prediction of abdominal tumors, specifically targeting the liver, pancreas, and kidneys. It utilizes a segmentation model sourced from [DiffTumor](https://github.com/MrGiovanni/DiffTumor).

# Instructions

### 1-Download
Download the singularity container.
```
wget https://huggingface.co/qicq1c/DiffTumor/resolve/main/difftumor_final.sif
```
### 2-Data preparation
This is how `inputs_data` organizes
```
    $inputs_data/
    β”œβ”€β”€ case00001.nii.gz
    β”œβ”€β”€ case00002.nii.gz
    β”œβ”€β”€ case00003.nii.gz
    β”œβ”€β”€ case000xx.nii.gz
    β”œβ”€β”€ ...
    β”œβ”€β”€ case10000.nii.gz
```

### 3-Inference
You can directly perform inference on your own data. Simply modify inputs_data to reflect your data path and adjust outputs_data to specify the desired output location for the segmentation results.
```
SINGULARITYENV_CUDA_VISIBLE_DEVICES=0 singularity run --nv -B $inputs_data:/workspace/inputs -B $outputs_data:/workspace/outputs difftumor.sif
```

This is how `outputs_data` organizes
```
    $outputs_data/
    β”œβ”€β”€ case00001
    β”œβ”€β”€ case00002
    β”œβ”€β”€ case00003
        │── ct.nii.gz
        └── predictions
            β”œβ”€β”€ liver.nii.gz
            β”œβ”€β”€ pancreas.nii.gz
            β”œβ”€β”€ kidney.nii.gz
            β”œβ”€β”€ liver_tumor.nii.gz
            β”œβ”€β”€ pancreas_tumor.nii.gz
            β”œβ”€β”€ kidney_tumor.nii.gz
```