Chu1111 commited on
Commit
a7ef97d
1 Parent(s): d24a125

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +3 -2
README.md CHANGED
@@ -70,7 +70,7 @@ We have validated the performance of our model on the [mteb-chinese-reranking le
70
 
71
  | Model | T2Reranking | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
72
  |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|
73
- | **360Zhinao-1_8B-reranking** | 68.55 | 37.29 | 86.75 | 87.92 | 70.13 |
74
  | piccolo-large-zh-v2 | 67.15 | 33.39 | 90.14 | 89.31 | 70 |
75
  | Baichuan-text-embedding | 67.85 | 34.3 | 88.46 | 88.06 | 69.67 |
76
  | stella-mrl-large-zh-v3.5-1792d | 66.43 | 28.85 | 89.18 | 89.33 | 68.45 |
@@ -115,6 +115,8 @@ Unlike generative tasks that produce multiple characters, using generative model
115
 
116
  # Inference Script
117
 
 
 
118
  ```python
119
  from typing import cast, List, Union, Tuple, Dict, Optional
120
 
@@ -131,7 +133,6 @@ def preprocess(
131
  tokenizer: transformers.PreTrainedTokenizer,
132
  max_len: int = 1024,
133
  system_message: str = "",
134
- #system_message: str = "You are a helpful assistant.",
135
  device = None,
136
  ) -> Dict:
137
  roles = {"user": "<|im_start|>user", "assistant": "<|im_start|>assistant"}
 
70
 
71
  | Model | T2Reranking | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
72
  |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|
73
+ | **360Zhinao-1_8B-reranking** | **68.55** | **37.29** | **86.75** | **87.92** | **70.13** |
74
  | piccolo-large-zh-v2 | 67.15 | 33.39 | 90.14 | 89.31 | 70 |
75
  | Baichuan-text-embedding | 67.85 | 34.3 | 88.46 | 88.06 | 69.67 |
76
  | stella-mrl-large-zh-v3.5-1792d | 66.43 | 28.85 | 89.18 | 89.33 | 68.45 |
 
115
 
116
  # Inference Script
117
 
118
+ You can copy the following scripts to [mteb-eval-scripts](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB), then replace FlagReranker with FlagRerankerCustom in [eval_cross_encoder](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/eval_cross_encoder.py) scripts, then run [eval_cross_encoder](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/eval_cross_encoder.py) to reproduce our complete performance on the [mteb-chinese-reranking leaderboard](https://huggingface.co/spaces/mteb/leaderboard).
119
+
120
  ```python
121
  from typing import cast, List, Union, Tuple, Dict, Optional
122
 
 
133
  tokenizer: transformers.PreTrainedTokenizer,
134
  max_len: int = 1024,
135
  system_message: str = "",
 
136
  device = None,
137
  ) -> Dict:
138
  roles = {"user": "<|im_start|>user", "assistant": "<|im_start|>assistant"}