Upload folder using huggingface_hub
Browse files- added_tokens.json +5 -0
- config.json +37 -0
- configuration_doubutsu.py +15 -0
- merges.txt +0 -0
- modeling_doubutsu.py +139 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +20 -0
- tokenizer.json +0 -0
- tokenizer_config.json +43 -0
- vocab.json +0 -0
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoConfig": "configuration_doubutsu.DoubutsuConfig",
|
4 |
+
"AutoModelForCausalLM": "modeling_doubutsu.Doubutsu"
|
5 |
+
},
|
6 |
+
"model_type": "doubutsu",
|
7 |
+
"text_config": {
|
8 |
+
"_name_or_path": "Qwen/Qwen2-1.5B-Instruct",
|
9 |
+
"architectures": [
|
10 |
+
"Qwen2ForCausalLM"
|
11 |
+
],
|
12 |
+
"bos_token_id": 151643,
|
13 |
+
"eos_token_id": 151645,
|
14 |
+
"hidden_size": 1536,
|
15 |
+
"intermediate_size": 8960,
|
16 |
+
"max_length": 32768,
|
17 |
+
"model_type": "qwen2",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 28,
|
20 |
+
"num_key_value_heads": 2,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": 32768,
|
23 |
+
"tie_word_embeddings": true,
|
24 |
+
"torch_dtype": "bfloat16"
|
25 |
+
},
|
26 |
+
"transformers_version": "4.40.1",
|
27 |
+
"vision_config": {
|
28 |
+
"_name_or_path": "google/siglip-so400m-patch14-384",
|
29 |
+
"hidden_size": 1152,
|
30 |
+
"image_size": 384,
|
31 |
+
"intermediate_size": 4304,
|
32 |
+
"model_type": "siglip_vision_model",
|
33 |
+
"num_attention_heads": 16,
|
34 |
+
"num_hidden_layers": 27,
|
35 |
+
"patch_size": 14
|
36 |
+
}
|
37 |
+
}
|
configuration_doubutsu.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig, Qwen2Config, SiglipVisionConfig
|
2 |
+
|
3 |
+
|
4 |
+
class DoubutsuConfig(PretrainedConfig):
|
5 |
+
model_type = "doubutsu"
|
6 |
+
|
7 |
+
def __init__(self, **kwargs):
|
8 |
+
self.text_config = Qwen2Config(
|
9 |
+
**kwargs.pop(
|
10 |
+
"text_config",
|
11 |
+
{},
|
12 |
+
),
|
13 |
+
)
|
14 |
+
self.vision_config = SiglipVisionConfig(**kwargs.pop("vision_config", {}))
|
15 |
+
super().__init__(**kwargs)
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_doubutsu.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import (
|
4 |
+
PreTrainedModel,
|
5 |
+
AutoModelForCausalLM,
|
6 |
+
AutoModel,
|
7 |
+
SiglipImageProcessor,
|
8 |
+
)
|
9 |
+
from .configuration_doubutsu import DoubutsuConfig
|
10 |
+
|
11 |
+
|
12 |
+
class ProjectionModule(nn.Module):
|
13 |
+
def __init__(self, mm_hidden_size=1152, hidden_size=1536):
|
14 |
+
super(ProjectionModule, self).__init__()
|
15 |
+
|
16 |
+
self.model = nn.Sequential(
|
17 |
+
nn.Linear(mm_hidden_size, hidden_size),
|
18 |
+
nn.GELU(),
|
19 |
+
nn.Linear(hidden_size, hidden_size),
|
20 |
+
)
|
21 |
+
|
22 |
+
def forward(self, x):
|
23 |
+
return self.model(x)
|
24 |
+
|
25 |
+
|
26 |
+
class Doubutsu(PreTrainedModel):
|
27 |
+
config_class = DoubutsuConfig
|
28 |
+
|
29 |
+
def __init__(self, config):
|
30 |
+
super().__init__(config)
|
31 |
+
|
32 |
+
self.vision_model = AutoModel.from_config(self.config.vision_config)
|
33 |
+
self.text_model = AutoModelForCausalLM.from_config(self.config.text_config)
|
34 |
+
self.processor = SiglipImageProcessor()
|
35 |
+
self.mm_projector = ProjectionModule(
|
36 |
+
mm_hidden_size=config.vision_config.hidden_size,
|
37 |
+
hidden_size=config.text_config.hidden_size,
|
38 |
+
)
|
39 |
+
|
40 |
+
@property
|
41 |
+
def device(self):
|
42 |
+
return self.text_model.device
|
43 |
+
|
44 |
+
def encode_image(self, image):
|
45 |
+
image = image.convert("RGB")
|
46 |
+
image = self.processor(
|
47 |
+
images=image,
|
48 |
+
return_tensors="pt",
|
49 |
+
do_resize=True,
|
50 |
+
size={"height": 378, "width": 378},
|
51 |
+
)["pixel_values"].to(
|
52 |
+
device=self.vision_model.device, dtype=self.vision_model.dtype
|
53 |
+
)
|
54 |
+
with torch.no_grad():
|
55 |
+
return self.vision_model(image, output_hidden_states=True).hidden_states[-2]
|
56 |
+
|
57 |
+
def input_embeds(self, prompt, image_embeds, tokenizer):
|
58 |
+
def _tokenize(txt):
|
59 |
+
return tokenizer(
|
60 |
+
txt, return_tensors="pt", add_special_tokens=False
|
61 |
+
).input_ids.to(self.device)
|
62 |
+
|
63 |
+
text_emb = self.text_model.get_input_embeddings()
|
64 |
+
embeds = []
|
65 |
+
tokenized_prompt = _tokenize(prompt)
|
66 |
+
|
67 |
+
# Add BOS token if it exists and isn't already at the start of the prompt
|
68 |
+
if tokenizer.bos_token_id is not None:
|
69 |
+
if tokenized_prompt[0][0] == tokenizer.bos_token_id:
|
70 |
+
tokenized_prompt = tokenized_prompt[:, 1:] # Remove existing BOS
|
71 |
+
embeds.append(
|
72 |
+
text_emb(torch.tensor([[tokenizer.bos_token_id]], device=self.device))
|
73 |
+
)
|
74 |
+
|
75 |
+
# Add image embeds
|
76 |
+
projected_image_embeds = self.mm_projector(image_embeds.to(self.device))
|
77 |
+
embeds.append(projected_image_embeds)
|
78 |
+
|
79 |
+
# Add text embeds
|
80 |
+
embeds.append(text_emb(tokenized_prompt))
|
81 |
+
|
82 |
+
return torch.cat(embeds, dim=1)
|
83 |
+
|
84 |
+
def get_input_embeddings(self):
|
85 |
+
return self.text_model.get_input_embeddings()
|
86 |
+
|
87 |
+
def generate(
|
88 |
+
self,
|
89 |
+
image_embeds,
|
90 |
+
prompt,
|
91 |
+
tokenizer,
|
92 |
+
max_new_tokens=128,
|
93 |
+
temperature=0.1,
|
94 |
+
**kwargs,
|
95 |
+
):
|
96 |
+
generate_config = {
|
97 |
+
"eos_token_id": tokenizer.eos_token_id,
|
98 |
+
"bos_token_id": tokenizer.bos_token_id,
|
99 |
+
"pad_token_id": tokenizer.pad_token_id,
|
100 |
+
"max_new_tokens": max_new_tokens,
|
101 |
+
"temperature": temperature,
|
102 |
+
**kwargs,
|
103 |
+
}
|
104 |
+
|
105 |
+
with torch.no_grad():
|
106 |
+
inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
|
107 |
+
output_ids = self.text_model.generate(
|
108 |
+
inputs_embeds=inputs_embeds,
|
109 |
+
do_sample=True,
|
110 |
+
**generate_config,
|
111 |
+
)
|
112 |
+
return tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
113 |
+
|
114 |
+
def answer_question(self, image, question, tokenizer, **kwargs):
|
115 |
+
image_embeds = self.encode_image(image)
|
116 |
+
|
117 |
+
chat = [
|
118 |
+
{
|
119 |
+
"role": "system",
|
120 |
+
"content": "You are a helpful AI assistant that can see images and answer questions about them.",
|
121 |
+
},
|
122 |
+
{"role": "user", "content": question},
|
123 |
+
]
|
124 |
+
prompt = tokenizer.apply_chat_template(
|
125 |
+
chat, tokenize=False, add_generation_prompt=True
|
126 |
+
)
|
127 |
+
|
128 |
+
# Generate the answer
|
129 |
+
with torch.no_grad():
|
130 |
+
output = self.generate(
|
131 |
+
image_embeds=image_embeds,
|
132 |
+
prompt=prompt,
|
133 |
+
tokenizer=tokenizer,
|
134 |
+
**kwargs,
|
135 |
+
)[0]
|
136 |
+
|
137 |
+
# Clean and return the answer
|
138 |
+
cleaned_answer = output.strip()
|
139 |
+
return cleaned_answer
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c10024a70443cf96a47827579df1f55adcdaef649c9e9c1dc33481f64573cb44
|
3 |
+
size 3952463074
|
special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|im_end|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"bos_token": null,
|
34 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "<|im_end|>",
|
37 |
+
"errors": "replace",
|
38 |
+
"model_max_length": 32768,
|
39 |
+
"pad_token": "<|endoftext|>",
|
40 |
+
"split_special_tokens": false,
|
41 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
42 |
+
"unk_token": null
|
43 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|