qaihm-bot commited on
Commit
37ed39e
1 Parent(s): f9cd2fd

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +35 -10
README.md CHANGED
@@ -18,7 +18,7 @@ tags:
18
 
19
  FFNet-78S-Quantized is a "fuss-free network" that segments street scene images with per-pixel classes like road, sidewalk, and pedestrian. Trained on the Cityscapes dataset.
20
 
21
- This model is an implementation of FFNet-78S-Quantized found [here](https://github.com/Qualcomm-AI-research/FFNet).
22
  This repository provides scripts to run FFNet-78S-Quantized on Qualcomm® devices.
23
  More details on model performance across various devices, can be found
24
  [here](https://aihub.qualcomm.com/models/ffnet_78s_quantized).
@@ -34,14 +34,25 @@ More details on model performance across various devices, can be found
34
  - Model size: 26.7 MB
35
  - Number of output classes: 19
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
 
39
 
40
- | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
41
- | ---|---|---|---|---|---|---|---|
42
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 5.845 ms | 1 - 3 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite)
43
-
44
-
45
 
46
  ## Installation
47
 
@@ -97,7 +108,17 @@ device. This script does the following:
97
  ```bash
98
  python -m qai_hub_models.models.ffnet_78s_quantized.export
99
  ```
100
-
 
 
 
 
 
 
 
 
 
 
101
 
102
 
103
 
@@ -121,15 +142,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
121
  Get more details on FFNet-78S-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/ffnet_78s_quantized).
122
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
123
 
 
124
  ## License
125
- - The license for the original implementation of FFNet-78S-Quantized can be found
126
- [here](https://github.com/Qualcomm-AI-research/FFNet/blob/master/LICENSE).
127
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
 
128
 
129
  ## References
130
  * [Simple and Efficient Architectures for Semantic Segmentation](https://arxiv.org/abs/2206.08236)
131
  * [Source Model Implementation](https://github.com/Qualcomm-AI-research/FFNet)
132
 
 
 
133
  ## Community
134
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
135
  * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
 
18
 
19
  FFNet-78S-Quantized is a "fuss-free network" that segments street scene images with per-pixel classes like road, sidewalk, and pedestrian. Trained on the Cityscapes dataset.
20
 
21
+ This model is an implementation of FFNet-78S-Quantized found [here]({source_repo}).
22
  This repository provides scripts to run FFNet-78S-Quantized on Qualcomm® devices.
23
  More details on model performance across various devices, can be found
24
  [here](https://aihub.qualcomm.com/models/ffnet_78s_quantized).
 
34
  - Model size: 26.7 MB
35
  - Number of output classes: 19
36
 
37
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
+ |---|---|---|---|---|---|---|---|---|
39
+ | FFNet-78S-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 5.745 ms | 0 - 2 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
40
+ | FFNet-78S-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 11.963 ms | 0 - 24 MB | INT8 | NPU | [FFNet-78S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.onnx) |
41
+ | FFNet-78S-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 4.089 ms | 1 - 86 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
42
+ | FFNet-78S-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 8.58 ms | 5 - 151 MB | INT8 | NPU | [FFNet-78S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.onnx) |
43
+ | FFNet-78S-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 35.597 ms | 1 - 48 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
44
+ | FFNet-78S-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 218.427 ms | 1 - 3 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
45
+ | FFNet-78S-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 5.683 ms | 1 - 2 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
46
+ | FFNet-78S-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 5.752 ms | 1 - 3 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
47
+ | FFNet-78S-Quantized | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 5.787 ms | 0 - 2 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
48
+ | FFNet-78S-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 5.717 ms | 1 - 3 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
49
+ | FFNet-78S-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 7.035 ms | 1 - 90 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
50
+ | FFNet-78S-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 3.501 ms | 1 - 38 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
51
+ | FFNet-78S-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 8.055 ms | 7 - 76 MB | INT8 | NPU | [FFNet-78S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.onnx) |
52
+ | FFNet-78S-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 12.351 ms | 22 - 22 MB | INT8 | NPU | [FFNet-78S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.onnx) |
53
 
54
 
55
 
 
 
 
 
 
56
 
57
  ## Installation
58
 
 
108
  ```bash
109
  python -m qai_hub_models.models.ffnet_78s_quantized.export
110
  ```
111
+ ```
112
+ Profiling Results
113
+ ------------------------------------------------------------
114
+ FFNet-78S-Quantized
115
+ Device : Samsung Galaxy S23 (13)
116
+ Runtime : TFLITE
117
+ Estimated inference time (ms) : 5.7
118
+ Estimated peak memory usage (MB): [0, 2]
119
+ Total # Ops : 156
120
+ Compute Unit(s) : NPU (156 ops)
121
+ ```
122
 
123
 
124
 
 
142
  Get more details on FFNet-78S-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/ffnet_78s_quantized).
143
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
144
 
145
+
146
  ## License
147
+ * The license for the original implementation of FFNet-78S-Quantized can be found [here](https://github.com/Qualcomm-AI-research/FFNet/blob/master/LICENSE).
148
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
149
+
150
+
151
 
152
  ## References
153
  * [Simple and Efficient Architectures for Semantic Segmentation](https://arxiv.org/abs/2206.08236)
154
  * [Source Model Implementation](https://github.com/Qualcomm-AI-research/FFNet)
155
 
156
+
157
+
158
  ## Community
159
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
160
  * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).