Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -18,7 +18,7 @@ tags:
|
|
18 |
|
19 |
FFNet-78S-Quantized is a "fuss-free network" that segments street scene images with per-pixel classes like road, sidewalk, and pedestrian. Trained on the Cityscapes dataset.
|
20 |
|
21 |
-
This model is an implementation of FFNet-78S-Quantized found [here](
|
22 |
This repository provides scripts to run FFNet-78S-Quantized on Qualcomm® devices.
|
23 |
More details on model performance across various devices, can be found
|
24 |
[here](https://aihub.qualcomm.com/models/ffnet_78s_quantized).
|
@@ -34,14 +34,25 @@ More details on model performance across various devices, can be found
|
|
34 |
- Model size: 26.7 MB
|
35 |
- Number of output classes: 19
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
|
39 |
|
40 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
41 |
-
| ---|---|---|---|---|---|---|---|
|
42 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 5.845 ms | 1 - 3 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite)
|
43 |
-
|
44 |
-
|
45 |
|
46 |
## Installation
|
47 |
|
@@ -97,7 +108,17 @@ device. This script does the following:
|
|
97 |
```bash
|
98 |
python -m qai_hub_models.models.ffnet_78s_quantized.export
|
99 |
```
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
|
103 |
|
@@ -121,15 +142,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
121 |
Get more details on FFNet-78S-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/ffnet_78s_quantized).
|
122 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
123 |
|
|
|
124 |
## License
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
128 |
|
129 |
## References
|
130 |
* [Simple and Efficient Architectures for Semantic Segmentation](https://arxiv.org/abs/2206.08236)
|
131 |
* [Source Model Implementation](https://github.com/Qualcomm-AI-research/FFNet)
|
132 |
|
|
|
|
|
133 |
## Community
|
134 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
135 |
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|
|
|
18 |
|
19 |
FFNet-78S-Quantized is a "fuss-free network" that segments street scene images with per-pixel classes like road, sidewalk, and pedestrian. Trained on the Cityscapes dataset.
|
20 |
|
21 |
+
This model is an implementation of FFNet-78S-Quantized found [here]({source_repo}).
|
22 |
This repository provides scripts to run FFNet-78S-Quantized on Qualcomm® devices.
|
23 |
More details on model performance across various devices, can be found
|
24 |
[here](https://aihub.qualcomm.com/models/ffnet_78s_quantized).
|
|
|
34 |
- Model size: 26.7 MB
|
35 |
- Number of output classes: 19
|
36 |
|
37 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
+
|---|---|---|---|---|---|---|---|---|
|
39 |
+
| FFNet-78S-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 5.745 ms | 0 - 2 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
40 |
+
| FFNet-78S-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 11.963 ms | 0 - 24 MB | INT8 | NPU | [FFNet-78S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.onnx) |
|
41 |
+
| FFNet-78S-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 4.089 ms | 1 - 86 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
42 |
+
| FFNet-78S-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 8.58 ms | 5 - 151 MB | INT8 | NPU | [FFNet-78S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.onnx) |
|
43 |
+
| FFNet-78S-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 35.597 ms | 1 - 48 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
44 |
+
| FFNet-78S-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 218.427 ms | 1 - 3 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
45 |
+
| FFNet-78S-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 5.683 ms | 1 - 2 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
46 |
+
| FFNet-78S-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 5.752 ms | 1 - 3 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
47 |
+
| FFNet-78S-Quantized | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 5.787 ms | 0 - 2 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
48 |
+
| FFNet-78S-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 5.717 ms | 1 - 3 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
49 |
+
| FFNet-78S-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 7.035 ms | 1 - 90 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
50 |
+
| FFNet-78S-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 3.501 ms | 1 - 38 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
51 |
+
| FFNet-78S-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 8.055 ms | 7 - 76 MB | INT8 | NPU | [FFNet-78S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.onnx) |
|
52 |
+
| FFNet-78S-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 12.351 ms | 22 - 22 MB | INT8 | NPU | [FFNet-78S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.onnx) |
|
53 |
|
54 |
|
55 |
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
## Installation
|
58 |
|
|
|
108 |
```bash
|
109 |
python -m qai_hub_models.models.ffnet_78s_quantized.export
|
110 |
```
|
111 |
+
```
|
112 |
+
Profiling Results
|
113 |
+
------------------------------------------------------------
|
114 |
+
FFNet-78S-Quantized
|
115 |
+
Device : Samsung Galaxy S23 (13)
|
116 |
+
Runtime : TFLITE
|
117 |
+
Estimated inference time (ms) : 5.7
|
118 |
+
Estimated peak memory usage (MB): [0, 2]
|
119 |
+
Total # Ops : 156
|
120 |
+
Compute Unit(s) : NPU (156 ops)
|
121 |
+
```
|
122 |
|
123 |
|
124 |
|
|
|
142 |
Get more details on FFNet-78S-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/ffnet_78s_quantized).
|
143 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
144 |
|
145 |
+
|
146 |
## License
|
147 |
+
* The license for the original implementation of FFNet-78S-Quantized can be found [here](https://github.com/Qualcomm-AI-research/FFNet/blob/master/LICENSE).
|
148 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
149 |
+
|
150 |
+
|
151 |
|
152 |
## References
|
153 |
* [Simple and Efficient Architectures for Semantic Segmentation](https://arxiv.org/abs/2206.08236)
|
154 |
* [Source Model Implementation](https://github.com/Qualcomm-AI-research/FFNet)
|
155 |
|
156 |
+
|
157 |
+
|
158 |
## Community
|
159 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
160 |
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|