qaihm-bot commited on
Commit
ccad597
1 Parent(s): a6dd978

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +36 -19
README.md CHANGED
@@ -15,7 +15,7 @@ tags:
15
 
16
  LaMa-Dilated is a machine learning model that allows to erase and in-paint part of given input image.
17
 
18
- This model is an implementation of LaMa-Dilated found [here](https://github.com/advimman/lama).
19
  This repository provides scripts to run LaMa-Dilated on Qualcomm® devices.
20
  More details on model performance across various devices, can be found
21
  [here](https://aihub.qualcomm.com/models/lama_dilated).
@@ -30,15 +30,28 @@ More details on model performance across various devices, can be found
30
  - Number of parameters: 45.6M
31
  - Model size: 174 MB
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
 
35
 
36
- | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
37
- | ---|---|---|---|---|---|---|---|
38
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 74.926 ms | 3 - 131 MB | FP16 | NPU | [LaMa-Dilated.tflite](https://huggingface.co/qualcomm/LaMa-Dilated/blob/main/LaMa-Dilated.tflite)
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 70.59 ms | 0 - 41 MB | FP16 | NPU | [LaMa-Dilated.so](https://huggingface.co/qualcomm/LaMa-Dilated/blob/main/LaMa-Dilated.so)
40
-
41
-
42
 
43
  ## Installation
44
 
@@ -94,16 +107,16 @@ device. This script does the following:
94
  ```bash
95
  python -m qai_hub_models.models.lama_dilated.export
96
  ```
97
-
98
  ```
99
- Profile Job summary of LaMa-Dilated
100
- --------------------------------------------------
101
- Device: Snapdragon X Elite CRD (11)
102
- Estimated Inference Time: 69.44 ms
103
- Estimated Peak Memory Range: 4.01-4.01 MB
104
- Compute Units: NPU (332) | Total (332)
105
-
106
-
 
107
  ```
108
 
109
 
@@ -202,15 +215,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
202
  Get more details on LaMa-Dilated's performance across various devices [here](https://aihub.qualcomm.com/models/lama_dilated).
203
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
204
 
 
205
  ## License
206
- - The license for the original implementation of LaMa-Dilated can be found
207
- [here](https://github.com/advimman/lama/blob/main/LICENSE).
208
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
 
209
 
210
  ## References
211
  * [Resolution-robust Large Mask Inpainting with Fourier Convolutions](https://arxiv.org/abs/2109.07161)
212
  * [Source Model Implementation](https://github.com/advimman/lama)
213
 
 
 
214
  ## Community
215
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
216
  * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
 
15
 
16
  LaMa-Dilated is a machine learning model that allows to erase and in-paint part of given input image.
17
 
18
+ This model is an implementation of LaMa-Dilated found [here]({source_repo}).
19
  This repository provides scripts to run LaMa-Dilated on Qualcomm® devices.
20
  More details on model performance across various devices, can be found
21
  [here](https://aihub.qualcomm.com/models/lama_dilated).
 
30
  - Number of parameters: 45.6M
31
  - Model size: 174 MB
32
 
33
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
34
+ |---|---|---|---|---|---|---|---|---|
35
+ | LaMa-Dilated | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 74.881 ms | 3 - 132 MB | FP16 | NPU | [LaMa-Dilated.tflite](https://huggingface.co/qualcomm/LaMa-Dilated/blob/main/LaMa-Dilated.tflite) |
36
+ | LaMa-Dilated | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 70.655 ms | 2 - 43 MB | FP16 | NPU | [LaMa-Dilated.so](https://huggingface.co/qualcomm/LaMa-Dilated/blob/main/LaMa-Dilated.so) |
37
+ | LaMa-Dilated | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 55.681 ms | 3 - 261 MB | FP16 | NPU | [LaMa-Dilated.tflite](https://huggingface.co/qualcomm/LaMa-Dilated/blob/main/LaMa-Dilated.tflite) |
38
+ | LaMa-Dilated | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 52.685 ms | 4 - 91 MB | FP16 | NPU | [LaMa-Dilated.so](https://huggingface.co/qualcomm/LaMa-Dilated/blob/main/LaMa-Dilated.so) |
39
+ | LaMa-Dilated | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 74.832 ms | 3 - 132 MB | FP16 | NPU | [LaMa-Dilated.tflite](https://huggingface.co/qualcomm/LaMa-Dilated/blob/main/LaMa-Dilated.tflite) |
40
+ | LaMa-Dilated | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 70.284 ms | 4 - 5 MB | FP16 | NPU | Use Export Script |
41
+ | LaMa-Dilated | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 74.735 ms | 3 - 131 MB | FP16 | NPU | [LaMa-Dilated.tflite](https://huggingface.co/qualcomm/LaMa-Dilated/blob/main/LaMa-Dilated.tflite) |
42
+ | LaMa-Dilated | SA8255 (Proxy) | SA8255P Proxy | QNN | 70.519 ms | 4 - 5 MB | FP16 | NPU | Use Export Script |
43
+ | LaMa-Dilated | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 74.677 ms | 7 - 297 MB | FP16 | NPU | [LaMa-Dilated.tflite](https://huggingface.co/qualcomm/LaMa-Dilated/blob/main/LaMa-Dilated.tflite) |
44
+ | LaMa-Dilated | SA8775 (Proxy) | SA8775P Proxy | QNN | 70.451 ms | 3 - 6 MB | FP16 | NPU | Use Export Script |
45
+ | LaMa-Dilated | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 74.665 ms | 3 - 132 MB | FP16 | NPU | [LaMa-Dilated.tflite](https://huggingface.co/qualcomm/LaMa-Dilated/blob/main/LaMa-Dilated.tflite) |
46
+ | LaMa-Dilated | SA8650 (Proxy) | SA8650P Proxy | QNN | 70.62 ms | 4 - 5 MB | FP16 | NPU | Use Export Script |
47
+ | LaMa-Dilated | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 105.083 ms | 3 - 161 MB | FP16 | NPU | [LaMa-Dilated.tflite](https://huggingface.co/qualcomm/LaMa-Dilated/blob/main/LaMa-Dilated.tflite) |
48
+ | LaMa-Dilated | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 100.5 ms | 4 - 44 MB | FP16 | NPU | Use Export Script |
49
+ | LaMa-Dilated | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 49.175 ms | 2 - 162 MB | FP16 | NPU | [LaMa-Dilated.tflite](https://huggingface.co/qualcomm/LaMa-Dilated/blob/main/LaMa-Dilated.tflite) |
50
+ | LaMa-Dilated | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 45.997 ms | 2 - 88 MB | FP16 | NPU | Use Export Script |
51
+ | LaMa-Dilated | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 71.913 ms | 4 - 4 MB | FP16 | NPU | Use Export Script |
52
 
53
 
54
 
 
 
 
 
 
 
55
 
56
  ## Installation
57
 
 
107
  ```bash
108
  python -m qai_hub_models.models.lama_dilated.export
109
  ```
 
110
  ```
111
+ Profiling Results
112
+ ------------------------------------------------------------
113
+ LaMa-Dilated
114
+ Device : Samsung Galaxy S23 (13)
115
+ Runtime : TFLITE
116
+ Estimated inference time (ms) : 74.9
117
+ Estimated peak memory usage (MB): [3, 132]
118
+ Total # Ops : 343
119
+ Compute Unit(s) : NPU (343 ops)
120
  ```
121
 
122
 
 
215
  Get more details on LaMa-Dilated's performance across various devices [here](https://aihub.qualcomm.com/models/lama_dilated).
216
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
217
 
218
+
219
  ## License
220
+ * The license for the original implementation of LaMa-Dilated can be found [here](https://github.com/advimman/lama/blob/main/LICENSE).
221
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
222
+
223
+
224
 
225
  ## References
226
  * [Resolution-robust Large Mask Inpainting with Fourier Convolutions](https://arxiv.org/abs/2109.07161)
227
  * [Source Model Implementation](https://github.com/advimman/lama)
228
 
229
+
230
+
231
  ## Community
232
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
233
  * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).