qaihm-bot commited on
Commit
7216c9f
1 Parent(s): 6ffc018

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +7 -6
README.md CHANGED
@@ -14,7 +14,7 @@ tags:
14
  # Unet-Segmentation: Optimized for Mobile Deployment
15
  ## Real-time segmentation optimized for mobile and edge
16
 
17
- UNet is a machine learning model that produces a segmentation mask for an image. The most basic use case will label each pixel in the image as being in the foreground or the background. More advanced usage will assign a class label to each pixel.
18
 
19
  This model is an implementation of Unet-Segmentation found [here](https://github.com/milesial/Pytorch-UNet).
20
  This repository provides scripts to run Unet-Segmentation on Qualcomm® devices.
@@ -30,14 +30,15 @@ More details on model performance across various devices, can be found
30
  - Input resolution: 224x224
31
  - Number of parameters: 31.0M
32
  - Model size: 118 MB
 
33
 
34
 
35
 
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 160.376 ms | 6 - 442 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite)
40
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 155.942 ms | 9 - 27 MB | FP16 | NPU | [Unet-Segmentation.so](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.so)
41
 
42
 
43
 
@@ -98,9 +99,9 @@ python -m qai_hub_models.models.unet_segmentation.export
98
  ```
99
  Profile Job summary of Unet-Segmentation
100
  --------------------------------------------------
101
- Device: Snapdragon X Elite CRD (11)
102
- Estimated Inference Time: 133.37 ms
103
- Estimated Peak Memory Range: 9.39-9.39 MB
104
  Compute Units: NPU (51) | Total (51)
105
 
106
 
 
14
  # Unet-Segmentation: Optimized for Mobile Deployment
15
  ## Real-time segmentation optimized for mobile and edge
16
 
17
+ UNet is a machine learning model that produces a segmentation mask for an image. The most basic use case will label each pixel in the image as being in the foreground or the background. More advanced usage will assign a class label to each pixel. This version of the model was trained on the data from Kaggle's Carvana Image Masking Challenge (see https://www.kaggle.com/c/carvana-image-masking-challenge) and is used for vehicle segmentation.
18
 
19
  This model is an implementation of Unet-Segmentation found [here](https://github.com/milesial/Pytorch-UNet).
20
  This repository provides scripts to run Unet-Segmentation on Qualcomm® devices.
 
30
  - Input resolution: 224x224
31
  - Number of parameters: 31.0M
32
  - Model size: 118 MB
33
+ - Number of output classes: 2 (foreground / background)
34
 
35
 
36
 
37
 
38
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
39
  | ---|---|---|---|---|---|---|---|
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 162.955 ms | 8 - 444 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite)
41
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 151.842 ms | 10 - 26 MB | FP16 | NPU | [Unet-Segmentation.so](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.so)
42
 
43
 
44
 
 
99
  ```
100
  Profile Job summary of Unet-Segmentation
101
  --------------------------------------------------
102
+ Device: SA8255 (Proxy) (13)
103
+ Estimated Inference Time: 157.83 ms
104
+ Estimated Peak Memory Range: 9.41-27.04 MB
105
  Compute Units: NPU (51) | Total (51)
106
 
107