qaihm-bot commited on
Commit
7949d59
1 Parent(s): b1de945

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +40 -19
README.md CHANGED
@@ -16,7 +16,7 @@ tags:
16
 
17
  UNet is a machine learning model that produces a segmentation mask for an image. The most basic use case will label each pixel in the image as being in the foreground or the background. More advanced usage will assign a class label to each pixel. This version of the model was trained on the data from Kaggle's Carvana Image Masking Challenge (see https://www.kaggle.com/c/carvana-image-masking-challenge) and is used for vehicle segmentation.
18
 
19
- This model is an implementation of Unet-Segmentation found [here](https://github.com/milesial/Pytorch-UNet).
20
  This repository provides scripts to run Unet-Segmentation on Qualcomm® devices.
21
  More details on model performance across various devices, can be found
22
  [here](https://aihub.qualcomm.com/models/unet_segmentation).
@@ -32,15 +32,32 @@ More details on model performance across various devices, can be found
32
  - Model size: 118 MB
33
  - Number of output classes: 2 (foreground / background)
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
 
37
 
38
- | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
39
- | ---|---|---|---|---|---|---|---|
40
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 156.677 ms | 6 - 9 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite)
41
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 157.042 ms | 9 - 28 MB | FP16 | NPU | [Unet-Segmentation.so](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.so)
42
-
43
-
44
 
45
  ## Installation
46
 
@@ -95,16 +112,16 @@ device. This script does the following:
95
  ```bash
96
  python -m qai_hub_models.models.unet_segmentation.export
97
  ```
98
-
99
  ```
100
- Profile Job summary of Unet-Segmentation
101
- --------------------------------------------------
102
- Device: Snapdragon X Elite CRD (11)
103
- Estimated Inference Time: 135.62 ms
104
- Estimated Peak Memory Range: 9.39-9.39 MB
105
- Compute Units: NPU (52) | Total (52)
106
-
107
-
 
108
  ```
109
 
110
 
@@ -203,15 +220,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
203
  Get more details on Unet-Segmentation's performance across various devices [here](https://aihub.qualcomm.com/models/unet_segmentation).
204
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
205
 
 
206
  ## License
207
- - The license for the original implementation of Unet-Segmentation can be found
208
- [here](https://github.com/milesial/Pytorch-UNet/blob/master/LICENSE).
209
- - The license for the compiled assets for on-device deployment can be found [here](https://github.com/milesial/Pytorch-UNet/blob/master/LICENSE)
 
210
 
211
  ## References
212
  * [U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597)
213
  * [Source Model Implementation](https://github.com/milesial/Pytorch-UNet)
214
 
 
 
215
  ## Community
216
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
217
  * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
 
16
 
17
  UNet is a machine learning model that produces a segmentation mask for an image. The most basic use case will label each pixel in the image as being in the foreground or the background. More advanced usage will assign a class label to each pixel. This version of the model was trained on the data from Kaggle's Carvana Image Masking Challenge (see https://www.kaggle.com/c/carvana-image-masking-challenge) and is used for vehicle segmentation.
18
 
19
+ This model is an implementation of Unet-Segmentation found [here]({source_repo}).
20
  This repository provides scripts to run Unet-Segmentation on Qualcomm® devices.
21
  More details on model performance across various devices, can be found
22
  [here](https://aihub.qualcomm.com/models/unet_segmentation).
 
32
  - Model size: 118 MB
33
  - Number of output classes: 2 (foreground / background)
34
 
35
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
36
+ |---|---|---|---|---|---|---|---|---|
37
+ | Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 153.929 ms | 6 - 442 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
38
+ | Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 151.064 ms | 10 - 30 MB | FP16 | NPU | [Unet-Segmentation.so](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.so) |
39
+ | Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 155.224 ms | 16 - 18 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
40
+ | Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 132.249 ms | 6 - 391 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
41
+ | Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 132.978 ms | 9 - 96 MB | FP16 | NPU | [Unet-Segmentation.so](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.so) |
42
+ | Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 134.367 ms | 0 - 402 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
43
+ | Unet-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 142.642 ms | 6 - 442 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
44
+ | Unet-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 136.843 ms | 10 - 11 MB | FP16 | NPU | Use Export Script |
45
+ | Unet-Segmentation | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 147.599 ms | 6 - 442 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
46
+ | Unet-Segmentation | SA8255 (Proxy) | SA8255P Proxy | QNN | 136.006 ms | 10 - 11 MB | FP16 | NPU | Use Export Script |
47
+ | Unet-Segmentation | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 145.119 ms | 6 - 442 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
48
+ | Unet-Segmentation | SA8775 (Proxy) | SA8775P Proxy | QNN | 143.044 ms | 10 - 11 MB | FP16 | NPU | Use Export Script |
49
+ | Unet-Segmentation | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 157.28 ms | 6 - 457 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
50
+ | Unet-Segmentation | SA8650 (Proxy) | SA8650P Proxy | QNN | 139.062 ms | 10 - 11 MB | FP16 | NPU | Use Export Script |
51
+ | Unet-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 380.675 ms | 0 - 388 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
52
+ | Unet-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 269.68 ms | 4 - 95 MB | FP16 | NPU | Use Export Script |
53
+ | Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 102.802 ms | 6 - 119 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
54
+ | Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 102.598 ms | 9 - 110 MB | FP16 | NPU | Use Export Script |
55
+ | Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 104.486 ms | 25 - 142 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
56
+ | Unet-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 135.807 ms | 9 - 9 MB | FP16 | NPU | Use Export Script |
57
+ | Unet-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 147.497 ms | 54 - 54 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
58
 
59
 
60
 
 
 
 
 
 
 
61
 
62
  ## Installation
63
 
 
112
  ```bash
113
  python -m qai_hub_models.models.unet_segmentation.export
114
  ```
 
115
  ```
116
+ Profiling Results
117
+ ------------------------------------------------------------
118
+ Unet-Segmentation
119
+ Device : Samsung Galaxy S23 (13)
120
+ Runtime : TFLITE
121
+ Estimated inference time (ms) : 153.9
122
+ Estimated peak memory usage (MB): [6, 442]
123
+ Total # Ops : 32
124
+ Compute Unit(s) : NPU (32 ops)
125
  ```
126
 
127
 
 
220
  Get more details on Unet-Segmentation's performance across various devices [here](https://aihub.qualcomm.com/models/unet_segmentation).
221
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
222
 
223
+
224
  ## License
225
+ * The license for the original implementation of Unet-Segmentation can be found [here](https://github.com/milesial/Pytorch-UNet/blob/master/LICENSE).
226
+ * The license for the compiled assets for on-device deployment can be found [here](https://github.com/milesial/Pytorch-UNet/blob/master/LICENSE)
227
+
228
+
229
 
230
  ## References
231
  * [U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597)
232
  * [Source Model Implementation](https://github.com/milesial/Pytorch-UNet)
233
 
234
+
235
+
236
  ## Community
237
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
238
  * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).