File size: 16,001 Bytes
35eaf40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b031964
35eaf40
 
2f4558d
b031964
 
35eaf40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
405fc10
 
0d59273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35eaf40
08282ee
 
35eaf40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08282ee
405fc10
 
 
 
 
0d59273
 
405fc10
 
0d59273
 
 
 
 
 
 
 
 
08282ee
 
 
35eaf40
 
08282ee
35eaf40
 
 
 
 
 
 
 
 
 
 
 
ff64ffd
35eaf40
 
ff64ffd
 
0d59273
2553552
35eaf40
 
 
 
0d59273
 
35eaf40
0d59273
35eaf40
 
0d59273
 
35eaf40
0d59273
35eaf40
 
 
0d59273
2553552
0d59273
 
2553552
0d59273
2553552
 
0d59273
 
2553552
0d59273
2553552
 
 
0d59273
35eaf40
 
 
 
 
 
 
 
 
 
 
2553552
ef20522
 
 
0d59273
 
 
 
35eaf40
 
 
 
 
 
 
 
2553552
 
ef20522
 
 
 
2553552
0d59273
 
 
 
 
 
 
35eaf40
 
 
 
 
 
 
 
 
 
08282ee
35eaf40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
405fc10
35eaf40
405fc10
 
 
 
35eaf40
 
 
 
 
405fc10
 
35eaf40
cf5f32b
35eaf40
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
---
library_name: pytorch
license: mit
pipeline_tag: automatic-speech-recognition
tags:
- foundation
- android

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/whisper_small_en/web-assets/model_demo.png)

# Whisper-Small-En: Optimized for Mobile Deployment
## Automatic speech recognition (ASR) model for English transcription as well as translation


OpenAI’s Whisper ASR (Automatic Speech Recognition) model is a state-of-the-art system designed for transcribing spoken language into written text. It exhibits robust performance in realistic, noisy environments, making it highly reliable for real-world applications. Specifically, it excels in long-form transcription, capable of accurately transcribing audio clips up to 30 seconds long. Time to the first token is the encoder's latency, while time to each additional token is decoder's latency, where we assume a mean decoded length specified below.

This model is an implementation of Whisper-Small-En found [here](https://github.com/openai/whisper/tree/main).


This repository provides scripts to run Whisper-Small-En on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/whisper_small_en).


### Model Details

- **Model Type:** Speech recognition
- **Model Stats:**
  - Model checkpoint: small.en
  - Input resolution: 80x3000 (30 seconds audio)
  - Mean decoded sequence length: 112 tokens
  - Number of parameters (WhisperEncoder): 102M
  - Model size (WhisperEncoder): 390 MB
  - Number of parameters (WhisperDecoder): 139M
  - Model size (WhisperDecoder): 531 MB

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| WhisperDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 29.81 ms | 11 - 96 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoder.tflite) |
| WhisperDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 11.818 ms | 59 - 139 MB | FP16 | NPU | [Whisper-Small-En.so](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoder.so) |
| WhisperDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 23.422 ms | 16 - 148 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoder.tflite) |
| WhisperDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 9.293 ms | 61 - 168 MB | FP16 | NPU | [Whisper-Small-En.so](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoder.so) |
| WhisperDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 19.441 ms | 15 - 176 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoder.tflite) |
| WhisperDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 7.329 ms | 47 - 181 MB | FP16 | NPU | Use Export Script |
| WhisperDecoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 28.585 ms | 16 - 98 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoder.tflite) |
| WhisperDecoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 12.218 ms | 39 - 40 MB | FP16 | NPU | Use Export Script |
| WhisperDecoder | SA7255P ADP | SA7255P | QNN | 75.01 ms | 53 - 64 MB | FP16 | NPU | Use Export Script |
| WhisperDecoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 29.634 ms | 16 - 96 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoder.tflite) |
| WhisperDecoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 11.938 ms | 61 - 62 MB | FP16 | NPU | Use Export Script |
| WhisperDecoder | SA8295P ADP | SA8295P | TFLITE | 31.029 ms | 16 - 163 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoder.tflite) |
| WhisperDecoder | SA8295P ADP | SA8295P | QNN | 14.525 ms | 57 - 63 MB | FP16 | NPU | Use Export Script |
| WhisperDecoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 28.772 ms | 16 - 98 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoder.tflite) |
| WhisperDecoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 12.051 ms | 61 - 62 MB | FP16 | NPU | Use Export Script |
| WhisperDecoder | SA8775P ADP | SA8775P | TFLITE | 33.281 ms | 16 - 175 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoder.tflite) |
| WhisperDecoder | SA8775P ADP | SA8775P | QNN | 14.774 ms | 51 - 61 MB | FP16 | NPU | Use Export Script |
| WhisperDecoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 33.302 ms | 16 - 141 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoder.tflite) |
| WhisperDecoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 16.624 ms | 53 - 171 MB | FP16 | NPU | Use Export Script |
| WhisperDecoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 10.781 ms | 61 - 61 MB | FP16 | NPU | Use Export Script |
| WhisperEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 700.75 ms | 67 - 440 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoder.tflite) |
| WhisperEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 823.812 ms | 0 - 209 MB | FP16 | NPU | [Whisper-Small-En.so](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoder.so) |
| WhisperEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 532.216 ms | 0 - 87 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoder.tflite) |
| WhisperEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 586.956 ms | 0 - 839 MB | FP16 | NPU | [Whisper-Small-En.so](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoder.so) |
| WhisperEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 552.324 ms | 111 - 139 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoder.tflite) |
| WhisperEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 513.813 ms | 0 - 906 MB | FP16 | NPU | Use Export Script |
| WhisperEncoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 677.595 ms | 92 - 467 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoder.tflite) |
| WhisperEncoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 671.038 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
| WhisperEncoder | SA7255P ADP | SA7255P | TFLITE | 4432.265 ms | 108 - 142 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoder.tflite) |
| WhisperEncoder | SA7255P ADP | SA7255P | QNN | 3212.772 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| WhisperEncoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 714.664 ms | 42 - 434 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoder.tflite) |
| WhisperEncoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 682.786 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
| WhisperEncoder | SA8295P ADP | SA8295P | TFLITE | 657.129 ms | 110 - 142 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoder.tflite) |
| WhisperEncoder | SA8295P ADP | SA8295P | QNN | 701.786 ms | 0 - 6 MB | FP16 | NPU | Use Export Script |
| WhisperEncoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 694.432 ms | 110 - 448 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoder.tflite) |
| WhisperEncoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 684.938 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
| WhisperEncoder | SA8775P ADP | SA8775P | TFLITE | 1290.958 ms | 100 - 132 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoder.tflite) |
| WhisperEncoder | SA8775P ADP | SA8775P | QNN | 604.972 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| WhisperEncoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 973.335 ms | 109 - 207 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoder.tflite) |
| WhisperEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 504.643 ms | 0 - 0 MB | FP16 | NPU | Use Export Script |




## Installation

This model can be installed as a Python package via pip.

```bash
pip install "qai-hub-models[whisper_small_en]"
```



## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.whisper_small_en.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.whisper_small_en.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.whisper_small_en.export
```
```
Profiling Results
------------------------------------------------------------
WhisperDecoder
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 29.8                   
Estimated peak memory usage (MB): [11, 96]               
Total # Ops                     : 2573                   
Compute Unit(s)                 : NPU (2573 ops)         

------------------------------------------------------------
WhisperEncoder
Device                          : Samsung Galaxy S23 (13)   
Runtime                         : TFLITE                    
Estimated inference time (ms)   : 700.8                     
Estimated peak memory usage (MB): [67, 440]                 
Total # Ops                     : 911                       
Compute Unit(s)                 : GPU (900 ops) CPU (11 ops)
```


## How does this work?

This [export script](https://aihub.qualcomm.com/models/whisper_small_en/qai_hub_models/models/Whisper-Small-En/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.whisper_small_en import Model

# Load the model
model = Model.from_pretrained()
decoder_model = model.decoder
encoder_model = model.encoder

# Device
device = hub.Device("Samsung Galaxy S23")

# Trace model
decoder_input_shape = decoder_model.get_input_spec()
decoder_sample_inputs = decoder_model.sample_inputs()

traced_decoder_model = torch.jit.trace(decoder_model, [torch.tensor(data[0]) for _, data in decoder_sample_inputs.items()])

# Compile model on a specific device
decoder_compile_job = hub.submit_compile_job(
    model=traced_decoder_model ,
    device=device,
    input_specs=decoder_model.get_input_spec(),
)

# Get target model to run on-device
decoder_target_model = decoder_compile_job.get_target_model()
# Trace model
encoder_input_shape = encoder_model.get_input_spec()
encoder_sample_inputs = encoder_model.sample_inputs()

traced_encoder_model = torch.jit.trace(encoder_model, [torch.tensor(data[0]) for _, data in encoder_sample_inputs.items()])

# Compile model on a specific device
encoder_compile_job = hub.submit_compile_job(
    model=traced_encoder_model ,
    device=device,
    input_specs=encoder_model.get_input_spec(),
)

# Get target model to run on-device
encoder_target_model = encoder_compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
decoder_profile_job = hub.submit_profile_job(
    model=decoder_target_model,
    device=device,
)
encoder_profile_job = hub.submit_profile_job(
    model=encoder_target_model,
    device=device,
)

```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
decoder_input_data = decoder_model.sample_inputs()
decoder_inference_job = hub.submit_inference_job(
    model=decoder_target_model,
    device=device,
    inputs=decoder_input_data,
)
decoder_inference_job.download_output_data()
encoder_input_data = encoder_model.sample_inputs()
encoder_inference_job = hub.submit_inference_job(
    model=encoder_target_model,
    device=device,
    inputs=encoder_input_data,
)
encoder_inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).




## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on Whisper-Small-En's performance across various devices [here](https://aihub.qualcomm.com/models/whisper_small_en).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of Whisper-Small-En can be found [here](https://github.com/openai/whisper/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf)
* [Source Model Implementation](https://github.com/openai/whisper/tree/main)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).