Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -14,7 +14,7 @@ tags:
|
|
14 |
# YOLOv8-Detection-Quantized: Optimized for Mobile Deployment
|
15 |
## Quantized real-time object detection optimized for mobile and edge by Ultralytics
|
16 |
|
17 |
-
Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is post-training quantized to int8 using samples from the
|
18 |
|
19 |
This model is an implementation of YOLOv8-Detection-Quantized found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect).
|
20 |
This repository provides scripts to run YOLOv8-Detection-Quantized on Qualcomm® devices.
|
@@ -34,8 +34,7 @@ More details on model performance across various devices, can be found
|
|
34 |
|
35 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
| ---|---|---|---|---|---|---|---|
|
37 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 2.
|
38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 2.121 ms | 1 - 11 MB | INT8 | NPU | [YOLOv8-Detection-Quantized.so](https://huggingface.co/qualcomm/YOLOv8-Detection-Quantized/blob/main/YOLOv8-Detection-Quantized.so)
|
39 |
|
40 |
|
41 |
## Installation
|
@@ -93,23 +92,6 @@ device. This script does the following:
|
|
93 |
python -m qai_hub_models.models.yolov8_det_quantized.export
|
94 |
```
|
95 |
|
96 |
-
```
|
97 |
-
Profile Job summary of YOLOv8-Detection-Quantized
|
98 |
-
--------------------------------------------------
|
99 |
-
Device: Samsung Galaxy S24 (14)
|
100 |
-
Estimated Inference Time: 1.42 ms
|
101 |
-
Estimated Peak Memory Range: 0.01-47.27 MB
|
102 |
-
Compute Units: NPU (274) | Total (274)
|
103 |
-
|
104 |
-
Profile Job summary of YOLOv8-Detection-Quantized
|
105 |
-
--------------------------------------------------
|
106 |
-
Device: Samsung Galaxy S24 (14)
|
107 |
-
Estimated Inference Time: 1.42 ms
|
108 |
-
Estimated Peak Memory Range: 1.19-102.44 MB
|
109 |
-
Compute Units: NPU (272) | Total (272)
|
110 |
-
|
111 |
-
|
112 |
-
```
|
113 |
## How does this work?
|
114 |
|
115 |
This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/YOLOv8-Detection-Quantized/export.py)
|
|
|
14 |
# YOLOv8-Detection-Quantized: Optimized for Mobile Deployment
|
15 |
## Quantized real-time object detection optimized for mobile and edge by Ultralytics
|
16 |
|
17 |
+
Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is post-training quantized to int8 using samples from the COCO dataset.
|
18 |
|
19 |
This model is an implementation of YOLOv8-Detection-Quantized found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect).
|
20 |
This repository provides scripts to run YOLOv8-Detection-Quantized on Qualcomm® devices.
|
|
|
34 |
|
35 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
| ---|---|---|---|---|---|---|---|
|
37 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 2.343 ms | 0 - 2 MB | INT8 | NPU | [YOLOv8-Detection-Quantized.tflite](https://huggingface.co/qualcomm/YOLOv8-Detection-Quantized/blob/main/YOLOv8-Detection-Quantized.tflite)
|
|
|
38 |
|
39 |
|
40 |
## Installation
|
|
|
92 |
python -m qai_hub_models.models.yolov8_det_quantized.export
|
93 |
```
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
## How does this work?
|
96 |
|
97 |
This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/YOLOv8-Detection-Quantized/export.py)
|