Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -38,7 +38,7 @@ More details on model performance across various devices, can be found
|
|
38 |
|
39 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
40 |
| ---|---|---|---|---|---|---|---|
|
41 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 4.
|
42 |
|
43 |
|
44 |
|
@@ -101,8 +101,8 @@ python -m qai_hub_models.models.yolonas_quantized.export
|
|
101 |
Profile Job summary of Yolo-NAS-Quantized
|
102 |
--------------------------------------------------
|
103 |
Device: RB3 Gen 2 (Proxy) (12)
|
104 |
-
Estimated Inference Time:
|
105 |
-
Estimated Peak Memory Range: 0.
|
106 |
Compute Units: NPU (203),CPU (1) | Total (204)
|
107 |
|
108 |
|
@@ -146,8 +146,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
146 |
|
147 |
## License
|
148 |
- The license for the original implementation of Yolo-NAS-Quantized can be found
|
149 |
-
[here](https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.
|
150 |
-
- The license for the compiled assets for on-device deployment can be found [here](https://
|
151 |
|
152 |
## References
|
153 |
* [YOLO-NAS by Deci Achieves SOTA Performance on Object Detection Using Neural Architecture Search](https://deci.ai/blog/yolo-nas-object-detection-foundation-model/)
|
|
|
38 |
|
39 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
40 |
| ---|---|---|---|---|---|---|---|
|
41 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 4.77 ms | 0 - 193 MB | INT8 | NPU | [Yolo-NAS-Quantized.tflite](https://huggingface.co/qualcomm/Yolo-NAS-Quantized/blob/main/Yolo-NAS-Quantized.tflite)
|
42 |
|
43 |
|
44 |
|
|
|
101 |
Profile Job summary of Yolo-NAS-Quantized
|
102 |
--------------------------------------------------
|
103 |
Device: RB3 Gen 2 (Proxy) (12)
|
104 |
+
Estimated Inference Time: 13.74 ms
|
105 |
+
Estimated Peak Memory Range: 0.09-66.41 MB
|
106 |
Compute Units: NPU (203),CPU (1) | Total (204)
|
107 |
|
108 |
|
|
|
146 |
|
147 |
## License
|
148 |
- The license for the original implementation of Yolo-NAS-Quantized can be found
|
149 |
+
[here](https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.md).
|
150 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.md)
|
151 |
|
152 |
## References
|
153 |
* [YOLO-NAS by Deci Achieves SOTA Performance on Object Detection Using Neural Architecture Search](https://deci.ai/blog/yolo-nas-object-detection-foundation-model/)
|