--- base_model: indobenchmark/indobert-large-p2 datasets: - quarkss/stsb-indo-mt library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:5749 - loss:CosineSimilarityLoss widget: - source_sentence: Dua ekor anjing berenang di kolam renang. sentences: - Anjing-anjing sedang berenang di kolam renang. - Seekor binatang sedang berjalan di atas tanah. - Seorang pria sedang menyeka pinggiran mangkuk. - source_sentence: Seorang anak perempuan sedang mengiris mentega menjadi dua bagian. sentences: - Seorang wanita sedang mengiris tahu. - Dua orang berkelahi. - Seorang pria sedang menari. - source_sentence: Seorang gadis sedang makan kue mangkuk. sentences: - Seorang pria sedang mengiris bawang putih dengan alat pengiris mandolin. - Seorang pria sedang memotong dan memotong bawang. - Seorang wanita sedang makan kue mangkuk. - source_sentence: Sebuah helikopter mendarat di landasan helikopter. sentences: - Seorang pria sedang mengiris mentimun. - Seorang pria sedang memotong batang pohon dengan kapak. - Sebuah helikopter mendarat. - source_sentence: Seorang pria sedang berjalan dengan seekor kuda. sentences: - Seorang pria sedang menuntun seekor kuda dengan tali kekang. - Seorang pria sedang menembakkan pistol. - Seorang wanita sedang memetik tomat. model-index: - name: SentenceTransformer based on indobenchmark/indobert-large-p2 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: Unknown type: unknown metrics: - type: pearson_cosine value: 0.8691840566814281 name: Pearson Cosine - type: spearman_cosine value: 0.8676618157111291 name: Spearman Cosine - type: pearson_manhattan value: 0.8591936899214765 name: Pearson Manhattan - type: spearman_manhattan value: 0.8625729388794413 name: Spearman Manhattan - type: pearson_euclidean value: 0.8599101625523397 name: Pearson Euclidean - type: spearman_euclidean value: 0.8632992102966184 name: Spearman Euclidean - type: pearson_dot value: 0.8440663965451926 name: Pearson Dot - type: spearman_dot value: 0.8392116432595296 name: Spearman Dot - type: pearson_max value: 0.8691840566814281 name: Pearson Max - type: spearman_max value: 0.8676618157111291 name: Spearman Max - type: pearson_cosine value: 0.8401688802461491 name: Pearson Cosine - type: spearman_cosine value: 0.8365597846163649 name: Spearman Cosine - type: pearson_manhattan value: 0.8276067064758832 name: Pearson Manhattan - type: spearman_manhattan value: 0.8315689286193226 name: Spearman Manhattan - type: pearson_euclidean value: 0.8277930159560367 name: Pearson Euclidean - type: spearman_euclidean value: 0.831557090168861 name: Spearman Euclidean - type: pearson_dot value: 0.8170329546065831 name: Pearson Dot - type: spearman_dot value: 0.8083098402255348 name: Spearman Dot - type: pearson_max value: 0.8401688802461491 name: Pearson Max - type: spearman_max value: 0.8365597846163649 name: Spearman Max --- # SentenceTransformer based on indobenchmark/indobert-large-p2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## STSB Test | Model | Spearman Correlation | |:----------------------------------------|-----------------------:| | quarkss/indobert-large-stsb | 0.8366 | | quarkss/indobert-base-stsb | 0.8123 | | sentence-transformers/all-MiniLM-L6-v2 | 0.5952 | | indobenchmark/indobert-large-p2 | 0.5673 | | sentence-transformers/all-mpnet-base-v2 | 0.5531 | | sentence-transformers/stsb-bert-base | 0.5349 | | indobenchmark/indobert-base-p2 | 0.5309 | ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("quarkss/indobert-large-stsb") # Run inference sentences = [ 'Seorang pria sedang berjalan dengan seekor kuda.', 'Seorang pria sedang menuntun seekor kuda dengan tali kekang.', 'Seorang pria sedang menembakkan pistol.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8692 | | **spearman_cosine** | **0.8677** | | pearson_manhattan | 0.8592 | | spearman_manhattan | 0.8626 | | pearson_euclidean | 0.8599 | | spearman_euclidean | 0.8633 | | pearson_dot | 0.8441 | | spearman_dot | 0.8392 | | pearson_max | 0.8692 | | spearman_max | 0.8677 | #### Semantic Similarity * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:-------------------|:-----------| | pearson_cosine | 0.8402 | | spearman_cosine | 0.8366 | | pearson_manhattan | 0.8276 | | spearman_manhattan | 0.8316 | | pearson_euclidean | 0.8278 | | spearman_euclidean | 0.8316 | | pearson_dot | 0.817 | | spearman_dot | 0.8083 | | pearson_max | 0.8402 | | **spearman_max** | **0.8366** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 5,749 training samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:-----------------------------------------------------------------------|:-----------------------------------------------------------------------------------------|:------------------| | Sebuah pesawat sedang lepas landas. | Sebuah pesawat terbang sedang lepas landas. | 1.0 | | Seorang pria sedang memainkan seruling besar. | Seorang pria sedang memainkan seruling. | 0.76 | | Seorang pria sedang mengoleskan keju parut di atas pizza. | Seorang pria sedang mengoleskan keju parut di atas pizza yang belum matang. | 0.76 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 2e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 5 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | spearman_cosine | spearman_max | |:------:|:----:|:-------------:|:---------------:|:------------:| | 0.2778 | 100 | 0.0867 | - | - | | 0.5556 | 200 | 0.0351 | - | - | | 0.8333 | 300 | 0.0303 | - | - | | 1.1111 | 400 | 0.0202 | - | - | | 1.3889 | 500 | 0.0154 | 0.8612 | - | | 1.6667 | 600 | 0.0136 | - | - | | 1.9444 | 700 | 0.0145 | - | - | | 2.2222 | 800 | 0.0082 | - | - | | 2.5 | 900 | 0.0072 | - | - | | 2.7778 | 1000 | 0.0068 | 0.8660 | - | | 3.0556 | 1100 | 0.0065 | - | - | | 3.3333 | 1200 | 0.0044 | - | - | | 3.6111 | 1300 | 0.0044 | - | - | | 3.8889 | 1400 | 0.0045 | - | - | | 4.1667 | 1500 | 0.0038 | 0.8677 | - | | 4.4444 | 1600 | 0.0038 | - | - | | 4.7222 | 1700 | 0.0035 | - | - | | 5.0 | 1800 | 0.0034 | - | 0.8366 | ### Framework Versions - Python: 3.10.13 - Sentence Transformers: 3.0.1 - Transformers: 4.42.4 - PyTorch: 2.0.1+cu117 - Accelerate: 0.32.1 - Datasets: 2.17.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```