|
"""
|
|
Fused Attention
|
|
===============
|
|
|
|
This is a Triton implementation of the Flash Attention v2 algorithm from Tri Dao (https://tridao.me/publications/flash2/flash2.pdf)
|
|
Credits: OpenAI kernel team
|
|
|
|
Extra Credits:
|
|
- Original flash attention paper (https://arxiv.org/abs/2205.14135)
|
|
- Rabe and Staats (https://arxiv.org/pdf/2112.05682v2.pdf)
|
|
|
|
"""
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
import triton
|
|
import triton.language as tl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TORCH_HAS_FP8E5B16 = hasattr(torch, 'float8_e5m2fnuz')
|
|
|
|
|
|
@triton.jit
|
|
def _attn_fwd_inner(acc, l_i, m_i, q,
|
|
K_block_ptr, V_block_ptr,
|
|
start_m,
|
|
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr,
|
|
STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr,
|
|
N_CTX,
|
|
pre_load_v: tl.constexpr):
|
|
|
|
if STAGE == 1:
|
|
lo, hi = 0, start_m * BLOCK_M
|
|
elif STAGE == 2:
|
|
lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M
|
|
lo = tl.multiple_of(lo, BLOCK_M)
|
|
K_block_ptr = tl.advance(K_block_ptr, (0, lo))
|
|
V_block_ptr = tl.advance(V_block_ptr, (lo, 0))
|
|
|
|
else:
|
|
lo, hi = 0, N_CTX
|
|
|
|
for start_n in range(lo, hi, BLOCK_N):
|
|
start_n = tl.multiple_of(start_n, BLOCK_N)
|
|
|
|
k = tl.load(K_block_ptr)
|
|
if pre_load_v:
|
|
v = tl.load(V_block_ptr)
|
|
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
|
if STAGE == 2:
|
|
mask = offs_m[:, None] >= (start_n + offs_n[None, :])
|
|
qk = tl.where(mask, qk, float("-inf"))
|
|
qk += tl.dot(q, k)
|
|
m_ij = tl.maximum(m_i, tl.max(qk, 1))
|
|
qk = qk - m_ij[:, None]
|
|
p = tl.math.exp2(qk)
|
|
|
|
alpha = tl.math.exp2(m_i - m_ij)
|
|
acc = acc * alpha[:, None]
|
|
if not pre_load_v:
|
|
v = tl.load(V_block_ptr)
|
|
acc += tl.dot(p.to(v.dtype), v)
|
|
|
|
l_ij = tl.sum(p, 1)
|
|
l_i = l_i * alpha + l_ij
|
|
|
|
m_i = m_ij
|
|
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
|
|
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
|
|
return acc, l_i, m_i
|
|
|
|
|
|
|
|
|
|
|
|
@triton.autotune(
|
|
configs=[
|
|
triton.Config({'BLOCK_M': 64, 'BLOCK_N': 16, 'waves_per_eu': 2,
|
|
'slice_k_tile': 0, 'pre_load_v': False}, num_stages=1, num_warps=2),
|
|
triton.Config({'BLOCK_M': 64, 'BLOCK_N': 16, 'waves_per_eu': 2,
|
|
'slice_k_tile': 32, 'pre_load_v': False}, num_stages=1, num_warps=2),
|
|
triton.Config({'BLOCK_M': 32, 'BLOCK_N': 32, 'waves_per_eu': 2,
|
|
'slice_k_tile': 0, 'pre_load_v': False}, num_stages=1, num_warps=1),
|
|
triton.Config({'BLOCK_M': 32, 'BLOCK_N': 32, 'waves_per_eu': 2,
|
|
'slice_k_tile': 32, 'pre_load_v': False}, num_stages=1, num_warps=1),
|
|
triton.Config({'BLOCK_M': 64, 'BLOCK_N': 32, 'waves_per_eu': 2,
|
|
'slice_k_tile': 0, 'pre_load_v': False}, num_stages=1, num_warps=2),
|
|
triton.Config({'BLOCK_M': 32, 'BLOCK_N': 16, 'waves_per_eu': 3,
|
|
'slice_k_tile': 0, 'pre_load_v': True}, num_stages=1, num_warps=1),
|
|
triton.Config({'BLOCK_M': 32, 'BLOCK_N': 16, 'waves_per_eu': 3,
|
|
'slice_k_tile': 0, 'pre_load_v': False}, num_stages=1, num_warps=1),
|
|
],
|
|
key=['Z', 'H', 'N_CTX', 'STAGE', 'BLOCK_DMODEL'],
|
|
)
|
|
@triton.jit
|
|
def _attn_fwd(Q, K, V, sm_scale, M, Out,
|
|
stride_qz, stride_qh, stride_qm, stride_qk,
|
|
stride_kz, stride_kh, stride_kn, stride_kk,
|
|
stride_vz, stride_vh, stride_vk, stride_vn,
|
|
stride_oz, stride_oh, stride_om, stride_on,
|
|
Z, H,
|
|
N_CTX,
|
|
BLOCK_DMODEL: tl.constexpr,
|
|
STAGE: tl.constexpr,
|
|
BLOCK_M: tl.constexpr,
|
|
BLOCK_N: tl.constexpr,
|
|
pre_load_v: tl.constexpr,
|
|
):
|
|
start_m = tl.program_id(0)
|
|
off_hz = tl.program_id(1)
|
|
qvk_offset = off_hz * stride_qh
|
|
|
|
|
|
Q_block_ptr = tl.make_block_ptr(
|
|
base=Q + qvk_offset,
|
|
shape=(N_CTX, BLOCK_DMODEL),
|
|
strides=(stride_qm, stride_qk),
|
|
offsets=(start_m * BLOCK_M, 0),
|
|
block_shape=(BLOCK_M, BLOCK_DMODEL),
|
|
order=(1, 0),
|
|
)
|
|
V_block_ptr = tl.make_block_ptr(
|
|
base=V + qvk_offset,
|
|
shape=(N_CTX, BLOCK_DMODEL),
|
|
strides=(stride_vk, stride_vn),
|
|
offsets=(0, 0),
|
|
block_shape=(BLOCK_N, BLOCK_DMODEL),
|
|
order=(1, 0),
|
|
)
|
|
K_block_ptr = tl.make_block_ptr(
|
|
base=K + qvk_offset,
|
|
shape=(BLOCK_DMODEL, N_CTX),
|
|
strides=(stride_kk, stride_kn),
|
|
offsets=(0, 0),
|
|
block_shape=(BLOCK_DMODEL, BLOCK_N),
|
|
order=(0, 1),
|
|
)
|
|
O_block_ptr = tl.make_block_ptr(
|
|
base=Out + qvk_offset,
|
|
shape=(N_CTX, BLOCK_DMODEL),
|
|
strides=(stride_om, stride_on),
|
|
offsets=(start_m * BLOCK_M, 0),
|
|
block_shape=(BLOCK_M, BLOCK_DMODEL),
|
|
order=(1, 0),
|
|
)
|
|
|
|
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
|
offs_n = tl.arange(0, BLOCK_N)
|
|
|
|
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
|
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
|
|
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
|
|
|
|
|
|
|
|
qk_scale = sm_scale * 1.44269504
|
|
|
|
q = tl.load(Q_block_ptr)
|
|
q = (q * qk_scale).to(q.dtype)
|
|
|
|
|
|
|
|
if STAGE & 1:
|
|
acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr,
|
|
start_m,
|
|
BLOCK_M, BLOCK_DMODEL, BLOCK_N,
|
|
4 - STAGE, offs_m, offs_n, N_CTX,
|
|
pre_load_v,
|
|
)
|
|
|
|
if STAGE & 2:
|
|
|
|
|
|
tl.debug_barrier()
|
|
acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr,
|
|
start_m,
|
|
BLOCK_M, BLOCK_DMODEL, BLOCK_N,
|
|
2, offs_m, offs_n, N_CTX,
|
|
pre_load_v,
|
|
)
|
|
|
|
|
|
acc = acc / l_i[:, None]
|
|
m_ptrs = M + off_hz * N_CTX + offs_m
|
|
tl.store(m_ptrs, m_i + tl.math.log2(l_i))
|
|
tl.store(O_block_ptr, acc.to(Out.type.element_ty))
|
|
|
|
|
|
@triton.jit
|
|
def _attn_bwd_preprocess(O, DO,
|
|
Delta,
|
|
Z, H, N_CTX,
|
|
BLOCK_M: tl.constexpr, D_HEAD: tl.constexpr
|
|
):
|
|
off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
|
|
off_hz = tl.program_id(1)
|
|
off_n = tl.arange(0, D_HEAD)
|
|
o = tl.load(O + off_hz * D_HEAD * N_CTX +
|
|
off_m[:, None] * D_HEAD + off_n[None, :])
|
|
do = tl.load(DO + off_hz * D_HEAD * N_CTX +
|
|
off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32)
|
|
delta = tl.sum(o * do, axis=1)
|
|
tl.store(Delta + off_hz * N_CTX + off_m, delta)
|
|
|
|
|
|
|
|
@triton.jit
|
|
def _attn_bwd_dkdv(dk, dv,
|
|
Q, k, v, sm_scale,
|
|
DO,
|
|
M, D,
|
|
|
|
stride_tok, stride_d,
|
|
H, N_CTX, BLOCK_M1: tl.constexpr,
|
|
BLOCK_N1: tl.constexpr,
|
|
BLOCK_DMODEL: tl.constexpr,
|
|
|
|
start_n, start_m, num_steps,
|
|
MASK: tl.constexpr):
|
|
offs_m = start_m + tl.arange(0, BLOCK_M1)
|
|
offs_n = start_n + tl.arange(0, BLOCK_N1)
|
|
offs_k = tl.arange(0, BLOCK_DMODEL)
|
|
QT_block_ptr = tl.make_block_ptr(
|
|
base=Q,
|
|
shape=(BLOCK_DMODEL, N_CTX),
|
|
strides=(stride_d, stride_tok),
|
|
offsets=(0, start_m),
|
|
block_shape=(BLOCK_DMODEL, BLOCK_M1),
|
|
order=(0, 1)
|
|
)
|
|
DO_block_ptr = tl.make_block_ptr(
|
|
base=DO,
|
|
shape=(N_CTX, BLOCK_DMODEL),
|
|
strides=(stride_tok, stride_d),
|
|
offsets=(start_m, 0),
|
|
block_shape=(BLOCK_M1, BLOCK_DMODEL),
|
|
order=(1, 0)
|
|
)
|
|
|
|
tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0)
|
|
curr_m = start_m
|
|
step_m = BLOCK_M1
|
|
for blk_idx in range(num_steps):
|
|
qT = tl.load(QT_block_ptr)
|
|
|
|
offs_m = curr_m + tl.arange(0, BLOCK_M1)
|
|
m = tl.load(M + offs_m)
|
|
qkT = tl.dot(k, qT)
|
|
pT = tl.math.exp2(qkT - m[None, :])
|
|
|
|
if MASK:
|
|
mask = (offs_m[None, :] >= offs_n[:, None])
|
|
pT = tl.where(mask, pT, 0.0)
|
|
do = tl.load(DO_block_ptr)
|
|
|
|
ppT = pT
|
|
ppT = ppT.to(tl.float16)
|
|
dv += tl.dot(ppT, do)
|
|
|
|
Di = tl.load(D + offs_m)
|
|
|
|
dpT = tl.dot(v, tl.trans(do))
|
|
dsT = pT * (dpT - Di[None, :])
|
|
dsT = dsT.to(tl.float16)
|
|
dk += tl.dot(dsT, tl.trans(qT))
|
|
|
|
curr_m += step_m
|
|
QT_block_ptr = tl.advance(QT_block_ptr, (0, step_m))
|
|
DO_block_ptr = tl.advance(DO_block_ptr, (step_m, 0))
|
|
return dk, dv
|
|
|
|
|
|
|
|
@triton.jit
|
|
def _attn_bwd_dq(dq, q, K, V,
|
|
do, m, D,
|
|
|
|
stride_tok, stride_d,
|
|
H, N_CTX,
|
|
BLOCK_M2: tl.constexpr,
|
|
BLOCK_N2: tl.constexpr,
|
|
BLOCK_DMODEL: tl.constexpr,
|
|
|
|
start_m, start_n, num_steps,
|
|
MASK: tl.constexpr):
|
|
offs_m = start_m + tl.arange(0, BLOCK_M2)
|
|
offs_n = start_n + tl.arange(0, BLOCK_N2)
|
|
offs_k = tl.arange(0, BLOCK_DMODEL)
|
|
KT_block_ptr = tl.make_block_ptr(
|
|
base=K,
|
|
shape=(BLOCK_DMODEL, N_CTX),
|
|
strides=(stride_d, stride_tok),
|
|
offsets=(0, start_n),
|
|
block_shape=(BLOCK_DMODEL, BLOCK_N2),
|
|
order=(0, 1)
|
|
)
|
|
VT_block_ptr = tl.make_block_ptr(
|
|
base=V,
|
|
shape=(BLOCK_DMODEL, N_CTX),
|
|
strides=(stride_d, stride_tok),
|
|
offsets=(0, start_n),
|
|
block_shape=(BLOCK_DMODEL, BLOCK_N2),
|
|
order=(0, 1)
|
|
)
|
|
|
|
Di = tl.load(D + offs_m)
|
|
|
|
tl.static_assert(BLOCK_M2 % BLOCK_N2 == 0)
|
|
curr_n = start_n
|
|
step_n = BLOCK_N2
|
|
for blk_idx in range(num_steps):
|
|
kT = tl.load(KT_block_ptr)
|
|
qk = tl.dot(q, kT)
|
|
p = tl.math.exp2(qk - m)
|
|
|
|
if MASK:
|
|
offs_n = curr_n + tl.arange(0, BLOCK_N2)
|
|
mask = (offs_m[:, None] >= offs_n[None, :])
|
|
p = tl.where(mask, p, 0.0)
|
|
|
|
vT = tl.load(VT_block_ptr)
|
|
dp = tl.dot(do, vT).to(tl.float32)
|
|
ds = p * (dp - Di[:, None])
|
|
ds = ds.to(tl.float16)
|
|
|
|
|
|
dq += tl.dot(ds, tl.trans(kT))
|
|
|
|
curr_n += step_n
|
|
KT_block_ptr = tl.advance(KT_block_ptr, (0, step_n))
|
|
VT_block_ptr = tl.advance(VT_block_ptr, (0, step_n))
|
|
return dq
|
|
|
|
|
|
@triton.autotune(
|
|
configs=[
|
|
triton.Config({'BLOCK_M1': 32, 'BLOCK_N1': 64, 'BLOCK_M2': 64, 'BLOCK_N2': 32, 'BLK_SLICE_FACTOR': 1},
|
|
num_stages=1, num_warps=4),
|
|
triton.Config({'BLOCK_M1': 32, 'BLOCK_N1': 64, 'BLOCK_M2': 64, 'BLOCK_N2': 32, 'BLK_SLICE_FACTOR': 2},
|
|
num_stages=1, num_warps=4),
|
|
triton.Config({'BLOCK_M1': 64, 'BLOCK_N1': 128, 'BLOCK_M2': 128, 'BLOCK_N2': 64, 'BLK_SLICE_FACTOR': 1},
|
|
num_stages=1, num_warps=4),
|
|
triton.Config({'BLOCK_M1': 64, 'BLOCK_N1': 128, 'BLOCK_M2': 128, 'BLOCK_N2': 64, 'BLK_SLICE_FACTOR': 2},
|
|
num_stages=1, num_warps=4),
|
|
triton.Config({'BLOCK_M1': 64, 'BLOCK_N1': 64, 'BLOCK_M2': 64, 'BLOCK_N2': 64, 'BLK_SLICE_FACTOR': 1},
|
|
num_stages=1, num_warps=4),
|
|
triton.Config({'BLOCK_M1': 64, 'BLOCK_N1': 64, 'BLOCK_M2': 64, 'BLOCK_N2': 64, 'BLK_SLICE_FACTOR': 2},
|
|
num_stages=1, num_warps=4),
|
|
triton.Config({'BLOCK_M1': 32, 'BLOCK_N1': 128, 'BLOCK_M2': 128, 'BLOCK_N2': 32, 'BLK_SLICE_FACTOR': 1},
|
|
num_stages=1, num_warps=4),
|
|
triton.Config({'BLOCK_M1': 32, 'BLOCK_N1': 128, 'BLOCK_M2': 128, 'BLOCK_N2': 32, 'BLK_SLICE_FACTOR': 2},
|
|
num_stages=1, num_warps=4),
|
|
triton.Config({'BLOCK_M1': 32, 'BLOCK_N1': 128, 'BLOCK_M2': 128, 'BLOCK_N2': 32, 'BLK_SLICE_FACTOR': 2},
|
|
num_stages=1, num_warps=8),
|
|
],
|
|
key=['H', 'N_CTX', 'BLOCK_DMODEL'],
|
|
)
|
|
@triton.jit
|
|
def _attn_bwd(Q, K, V, sm_scale,
|
|
DO,
|
|
DQ, DK, DV,
|
|
M, D,
|
|
|
|
stride_z, stride_h, stride_tok, stride_d,
|
|
|
|
H, N_CTX,
|
|
BLOCK_DMODEL: tl.constexpr,
|
|
BLOCK_M1: tl.constexpr,
|
|
BLOCK_N1: tl.constexpr,
|
|
BLOCK_M2: tl.constexpr,
|
|
BLOCK_N2: tl.constexpr,
|
|
BLK_SLICE_FACTOR: tl.constexpr):
|
|
LN2: tl.constexpr = 0.6931471824645996
|
|
|
|
bhid = tl.program_id(2)
|
|
off_chz = (bhid * N_CTX).to(tl.int64)
|
|
adj = (stride_h * (bhid % H) + stride_z * (bhid // H)).to(tl.int64)
|
|
pid = tl.program_id(0)
|
|
|
|
|
|
Q += adj
|
|
K += adj
|
|
V += adj
|
|
DO += adj
|
|
DQ += adj
|
|
DK += adj
|
|
DV += adj
|
|
M += off_chz
|
|
D += off_chz
|
|
|
|
offs_k = tl.arange(0, BLOCK_DMODEL)
|
|
|
|
start_n = pid * BLOCK_N1
|
|
|
|
|
|
|
|
start_m = start_n
|
|
|
|
MASK_BLOCK_M1: tl.constexpr = BLOCK_M1 // BLK_SLICE_FACTOR
|
|
offs_n = start_n + tl.arange(0, BLOCK_N1)
|
|
|
|
dv = tl.zeros([BLOCK_N1, BLOCK_DMODEL], dtype=tl.float32)
|
|
dk = tl.zeros([BLOCK_N1, BLOCK_DMODEL], dtype=tl.float32)
|
|
|
|
K_block_ptr = tl.make_block_ptr(
|
|
base=K,
|
|
shape=(N_CTX, BLOCK_DMODEL),
|
|
strides=(stride_tok, stride_d),
|
|
offsets=(start_n, 0),
|
|
block_shape=(BLOCK_N1, BLOCK_DMODEL),
|
|
order=(1, 0),
|
|
)
|
|
V_block_ptr = tl.make_block_ptr(
|
|
base=V,
|
|
shape=(N_CTX, BLOCK_DMODEL),
|
|
strides=(stride_tok, stride_d),
|
|
offsets=(start_n, 0),
|
|
block_shape=(BLOCK_N1, BLOCK_DMODEL),
|
|
order=(1, 0),
|
|
)
|
|
|
|
|
|
k = tl.load(K_block_ptr)
|
|
v = tl.load(V_block_ptr)
|
|
|
|
num_steps = BLOCK_N1 // MASK_BLOCK_M1
|
|
|
|
dk, dv = _attn_bwd_dkdv(dk, dv,
|
|
Q, k, v, sm_scale,
|
|
DO,
|
|
M, D,
|
|
stride_tok, stride_d,
|
|
H, N_CTX,
|
|
MASK_BLOCK_M1, BLOCK_N1, BLOCK_DMODEL,
|
|
start_n, start_m, num_steps,
|
|
MASK=True
|
|
)
|
|
|
|
start_m += num_steps * MASK_BLOCK_M1
|
|
num_steps = (N_CTX - start_m) // BLOCK_M1
|
|
|
|
|
|
dk, dv = _attn_bwd_dkdv(
|
|
dk, dv,
|
|
Q, k, v, sm_scale,
|
|
DO,
|
|
M, D,
|
|
stride_tok, stride_d,
|
|
H, N_CTX,
|
|
BLOCK_M1, BLOCK_N1, BLOCK_DMODEL,
|
|
start_n, start_m, num_steps,
|
|
MASK=False
|
|
)
|
|
|
|
DV_block_ptrs = tl.make_block_ptr(
|
|
base=DV,
|
|
shape=(N_CTX, BLOCK_DMODEL),
|
|
strides=(stride_tok, stride_d),
|
|
offsets=(start_n, 0),
|
|
block_shape=(BLOCK_N1, BLOCK_DMODEL),
|
|
order=(1, 0)
|
|
)
|
|
tl.store(DV_block_ptrs, dv.to(tl.float16))
|
|
|
|
|
|
dk *= sm_scale
|
|
DK_block_ptrs = tl.make_block_ptr(
|
|
base=DK,
|
|
shape=(N_CTX, BLOCK_DMODEL),
|
|
strides=(stride_tok, stride_d),
|
|
offsets=(start_n, 0),
|
|
block_shape=(BLOCK_N1, BLOCK_DMODEL),
|
|
order=(1, 0)
|
|
)
|
|
tl.store(DK_block_ptrs, dk.to(tl.float16))
|
|
|
|
|
|
start_m = pid * BLOCK_M2
|
|
end_n = start_m + BLOCK_M2
|
|
|
|
MASK_BLOCK_N2: tl.constexpr = BLOCK_N2 // BLK_SLICE_FACTOR
|
|
offs_m = start_m + tl.arange(0, BLOCK_M2)
|
|
|
|
Q_block_ptr = tl.make_block_ptr(
|
|
base=Q,
|
|
shape=(N_CTX, BLOCK_DMODEL),
|
|
strides=(stride_tok, stride_d),
|
|
offsets=(start_m, 0),
|
|
block_shape=(BLOCK_M2, BLOCK_DMODEL),
|
|
order=(1, 0)
|
|
)
|
|
|
|
DO_block_ptr = tl.make_block_ptr(
|
|
base=DO,
|
|
shape=(N_CTX, BLOCK_DMODEL),
|
|
strides=(stride_tok, stride_d),
|
|
offsets=(start_m, 0),
|
|
block_shape=(BLOCK_M2, BLOCK_DMODEL),
|
|
order=(1, 0)
|
|
)
|
|
q = tl.load(Q_block_ptr)
|
|
do = tl.load(DO_block_ptr)
|
|
dq = tl.zeros([BLOCK_M2, BLOCK_DMODEL], dtype=tl.float32)
|
|
|
|
m = tl.load(M + offs_m)
|
|
m = m[:, None]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_steps = BLOCK_M2 // MASK_BLOCK_N2
|
|
dq = _attn_bwd_dq(dq, q, K, V,
|
|
do, m, D,
|
|
stride_tok, stride_d,
|
|
H, N_CTX,
|
|
BLOCK_M2, MASK_BLOCK_N2, BLOCK_DMODEL,
|
|
start_m, end_n - num_steps * MASK_BLOCK_N2, num_steps,
|
|
MASK=True
|
|
)
|
|
end_n -= num_steps * MASK_BLOCK_N2
|
|
|
|
num_steps = end_n // BLOCK_N2
|
|
dq = _attn_bwd_dq(dq, q, K, V,
|
|
do, m, D,
|
|
stride_tok, stride_d,
|
|
H, N_CTX,
|
|
BLOCK_M2, BLOCK_N2, BLOCK_DMODEL,
|
|
start_m, end_n - num_steps * BLOCK_N2, num_steps,
|
|
MASK=False
|
|
)
|
|
|
|
DQ_block_ptr = tl.make_block_ptr(
|
|
base=DQ,
|
|
shape=(N_CTX, BLOCK_DMODEL),
|
|
strides=(stride_tok, stride_d),
|
|
offsets=(start_m, 0),
|
|
block_shape=(BLOCK_M2, BLOCK_DMODEL),
|
|
order=(1, 0)
|
|
)
|
|
dq *= LN2
|
|
tl.store(DQ_block_ptr, dq.to(tl.float16))
|
|
|
|
|
|
empty = torch.empty(128, device="cuda")
|
|
|
|
|
|
class _attention(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
def forward(ctx, q, k, v, causal, sm_scale):
|
|
|
|
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
|
|
assert Lq == Lk and Lk == Lv
|
|
assert Lk in {16, 32, 64, 128}
|
|
o = torch.empty_like(q, dtype=v.dtype)
|
|
if torch.version.hip is None:
|
|
BLOCK_M = 128
|
|
BLOCK_N = 64 if Lk <= 64 else 32
|
|
num_stages = 4 if Lk <= 64 else 3
|
|
num_warps = 4 if Lk <= 64 else 8
|
|
|
|
if torch.cuda.get_device_capability()[0] == 9:
|
|
num_warps = 8
|
|
num_stages = 7 if Lk >= 64 else 3
|
|
stage = 3 if causal else 1
|
|
|
|
def grid(META): return (
|
|
triton.cdiv(q.shape[2], META['BLOCK_M']),
|
|
q.shape[0] * q.shape[1],
|
|
1
|
|
)
|
|
M = torch.empty((q.shape[0] * q.shape[1], q.shape[2]),
|
|
device=q.device, dtype=torch.float32)
|
|
_attn_fwd[grid](
|
|
q, k, v, sm_scale, M, o,
|
|
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
|
|
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
|
|
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
|
|
o.stride(0), o.stride(1), o.stride(2), o.stride(3),
|
|
q.shape[0], q.shape[1],
|
|
N_CTX=q.shape[2],
|
|
BLOCK_DMODEL=Lk,
|
|
STAGE=stage,
|
|
)
|
|
|
|
|
|
best_config = _attn_fwd.get_best_config()
|
|
block_m = int(best_config.__str__().split(",")[0].split("BLOCK_M:")[1])
|
|
grid = (triton.cdiv(q.shape[2], block_m), q.shape[0] * q.shape[1], 1)
|
|
|
|
ctx.save_for_backward(q, k, v, o, M)
|
|
ctx.grid = grid
|
|
ctx.sm_scale = sm_scale
|
|
ctx.BLOCK_DMODEL = Lk
|
|
ctx.causal = causal
|
|
return o
|
|
|
|
@staticmethod
|
|
def backward(ctx, do):
|
|
if torch.version.hip is not None:
|
|
BLOCK = 64
|
|
else:
|
|
BLOCK = 128
|
|
q, k, v, o, M = ctx.saved_tensors
|
|
assert do.is_contiguous()
|
|
assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride()
|
|
dq = torch.empty_like(q)
|
|
dk = torch.empty_like(k)
|
|
dv = torch.empty_like(v)
|
|
BATCH, N_HEAD, N_CTX = q.shape[:3]
|
|
PRE_BLOCK = 128
|
|
NUM_WARPS, NUM_STAGES = 4, 1
|
|
BLOCK_M1, BLOCK_N1, BLOCK_M2, BLOCK_N2 = 32, 64, 64, 32
|
|
BLK_SLICE_FACTOR = 2
|
|
RCP_LN2 = 1.4426950408889634
|
|
arg_k = k
|
|
arg_k = arg_k * (ctx.sm_scale * RCP_LN2)
|
|
assert N_CTX % PRE_BLOCK == 0
|
|
pre_grid = (N_CTX // PRE_BLOCK, BATCH * N_HEAD)
|
|
delta = torch.empty_like(M)
|
|
_attn_bwd_preprocess[pre_grid](
|
|
o, do,
|
|
delta,
|
|
BATCH, N_HEAD, N_CTX,
|
|
BLOCK_M=PRE_BLOCK, D_HEAD=ctx.BLOCK_DMODEL
|
|
)
|
|
|
|
def grid(META): return (
|
|
triton.cdiv(N_CTX, META['BLOCK_N1']),
|
|
1,
|
|
BATCH * N_HEAD
|
|
)
|
|
_attn_bwd[grid](
|
|
q, arg_k, v, ctx.sm_scale, do, dq, dk, dv,
|
|
M, delta,
|
|
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
|
|
N_HEAD, N_CTX,
|
|
BLOCK_DMODEL=ctx.BLOCK_DMODEL
|
|
)
|
|
|
|
return dq, dk, dv, None, None
|
|
|
|
|
|
attention = _attention.apply
|
|
|