ragarwal commited on
Commit
c08b06f
1 Parent(s): 6271cde

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -3
README.md CHANGED
@@ -7,11 +7,13 @@ license: mit
7
  The approach is simple:
8
 
9
  1. Combine all available NLI data without any domain-dependent re-balancing or re-weighting.
10
-
11
  2. Finetune several SOTA transformers of different sizes (20m parameters to 300m parameters) on the combined data.
12
  3. Evaluate on challenging NLI datasets.
13
 
14
- This model is a ```deberta-v3-base``` finetuned on 20+ NLI datasets.
 
 
 
15
 
16
  ### Usage
17
 
@@ -45,7 +47,7 @@ with torch.no_grad():
45
  ```
46
 
47
 
48
- In [Sentence-Transformers](https://www.sbert.net/)
49
 
50
  ```python
51
  from sentence_transformers import CrossEncoder
 
7
  The approach is simple:
8
 
9
  1. Combine all available NLI data without any domain-dependent re-balancing or re-weighting.
 
10
  2. Finetune several SOTA transformers of different sizes (20m parameters to 300m parameters) on the combined data.
11
  3. Evaluate on challenging NLI datasets.
12
 
13
+ This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class. It is based on [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large).
14
+
15
+ ### Data
16
+ 20+ NLI datasets were combined to train a binary classification model. The contradiction and neutral labels were mixed to form a non-entailment class.
17
 
18
  ### Usage
19
 
 
47
  ```
48
 
49
 
50
+ In Sentence-Transformers
51
 
52
  ```python
53
  from sentence_transformers import CrossEncoder