---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
widget:
structuredData:
Contract:
- Two year
- Month-to-month
- One year
Dependents:
- 'Yes'
- 'No'
- 'No'
DeviceProtection:
- 'No'
- 'No'
- 'Yes'
InternetService:
- Fiber optic
- Fiber optic
- DSL
MonthlyCharges:
- 79.05
- 84.95
- 68.8
MultipleLines:
- 'Yes'
- 'Yes'
- 'Yes'
OnlineBackup:
- 'No'
- 'No'
- 'Yes'
OnlineSecurity:
- 'Yes'
- 'No'
- 'Yes'
PaperlessBilling:
- 'No'
- 'Yes'
- 'No'
Partner:
- 'Yes'
- 'Yes'
- 'No'
PaymentMethod:
- Bank transfer (automatic)
- Electronic check
- Bank transfer (automatic)
PhoneService:
- 'Yes'
- 'Yes'
- 'Yes'
SeniorCitizen:
- 0
- 0
- 0
StreamingMovies:
- 'No'
- 'No'
- 'No'
StreamingTV:
- 'No'
- 'Yes'
- 'No'
TechSupport:
- 'No'
- 'No'
- 'Yes'
TotalCharges:
- 5730.7
- 1378.25
- 4111.35
gender:
- Female
- Female
- Male
tenure:
- 72
- 16
- 63
---
# Model description
This is a Logistic Regression model trained on churn dataset.
## Intended uses & limitations
This model is not ready to be used in production.
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
Click to expand
| Hyperparameter | Value |
|--------------------------------------------|-----------------------------------------------------------------------------------|
| memory | |
| steps | [('preprocessor', ColumnTransformer(transformers=[('num',
Pipeline(steps=[('imputer',
SimpleImputer(strategy='median')),
('std_scaler',
StandardScaler())]),
['MonthlyCharges', 'TotalCharges', 'tenure']),
('cat', OneHotEncoder(),
['SeniorCitizen', 'gender', 'Partner',
'Dependents', 'PhoneService', 'MultipleLines',
'InternetService', 'OnlineSecurity',
'OnlineBackup', 'DeviceProtection',
'TechSupport', 'StreamingTV',
'StreamingMovies', 'Contract',
'PaperlessBilling', 'PaymentMethod'])])), ('classifier', LogisticRegression(class_weight='balanced', max_iter=300))] |
| verbose | False |
| preprocessor | ColumnTransformer(transformers=[('num',
Pipeline(steps=[('imputer',
SimpleImputer(strategy='median')),
('std_scaler',
StandardScaler())]),
['MonthlyCharges', 'TotalCharges', 'tenure']),
('cat', OneHotEncoder(),
['SeniorCitizen', 'gender', 'Partner',
'Dependents', 'PhoneService', 'MultipleLines',
'InternetService', 'OnlineSecurity',
'OnlineBackup', 'DeviceProtection',
'TechSupport', 'StreamingTV',
'StreamingMovies', 'Contract',
'PaperlessBilling', 'PaymentMethod'])]) |
| classifier | LogisticRegression(class_weight='balanced', max_iter=300) |
| preprocessor__n_jobs | |
| preprocessor__remainder | drop |
| preprocessor__sparse_threshold | 0.3 |
| preprocessor__transformer_weights | |
| preprocessor__transformers | [('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),
('std_scaler', StandardScaler())]), ['MonthlyCharges', 'TotalCharges', 'tenure']), ('cat', OneHotEncoder(), ['SeniorCitizen', 'gender', 'Partner', 'Dependents', 'PhoneService', 'MultipleLines', 'InternetService', 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling', 'PaymentMethod'])] |
| preprocessor__verbose | False |
| preprocessor__verbose_feature_names_out | True |
| preprocessor__num | Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),
('std_scaler', StandardScaler())]) |
| preprocessor__cat | OneHotEncoder() |
| preprocessor__num__memory | |
| preprocessor__num__steps | [('imputer', SimpleImputer(strategy='median')), ('std_scaler', StandardScaler())] |
| preprocessor__num__verbose | False |
| preprocessor__num__imputer | SimpleImputer(strategy='median') |
| preprocessor__num__std_scaler | StandardScaler() |
| preprocessor__num__imputer__add_indicator | False |
| preprocessor__num__imputer__copy | True |
| preprocessor__num__imputer__fill_value | |
| preprocessor__num__imputer__missing_values | nan |
| preprocessor__num__imputer__strategy | median |
| preprocessor__num__imputer__verbose | deprecated |
| preprocessor__num__std_scaler__copy | True |
| preprocessor__num__std_scaler__with_mean | True |
| preprocessor__num__std_scaler__with_std | True |
| preprocessor__cat__categories | auto |
| preprocessor__cat__drop | |
| preprocessor__cat__dtype |
Pipeline(steps=[('preprocessor',ColumnTransformer(transformers=[('num',Pipeline(steps=[('imputer',SimpleImputer(strategy='median')),('std_scaler',StandardScaler())]),['MonthlyCharges','TotalCharges', 'tenure']),('cat', OneHotEncoder(),['SeniorCitizen', 'gender','Partner', 'Dependents','PhoneService','MultipleLines','InternetService','OnlineSecurity','OnlineBackup','DeviceProtection','TechSupport', 'StreamingTV','StreamingMovies','Contract','PaperlessBilling','PaymentMethod'])])),('classifier',LogisticRegression(class_weight='balanced', max_iter=300))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('preprocessor',ColumnTransformer(transformers=[('num',Pipeline(steps=[('imputer',SimpleImputer(strategy='median')),('std_scaler',StandardScaler())]),['MonthlyCharges','TotalCharges', 'tenure']),('cat', OneHotEncoder(),['SeniorCitizen', 'gender','Partner', 'Dependents','PhoneService','MultipleLines','InternetService','OnlineSecurity','OnlineBackup','DeviceProtection','TechSupport', 'StreamingTV','StreamingMovies','Contract','PaperlessBilling','PaymentMethod'])])),('classifier',LogisticRegression(class_weight='balanced', max_iter=300))])
ColumnTransformer(transformers=[('num',Pipeline(steps=[('imputer',SimpleImputer(strategy='median')),('std_scaler',StandardScaler())]),['MonthlyCharges', 'TotalCharges', 'tenure']),('cat', OneHotEncoder(),['SeniorCitizen', 'gender', 'Partner','Dependents', 'PhoneService', 'MultipleLines','InternetService', 'OnlineSecurity','OnlineBackup', 'DeviceProtection','TechSupport', 'StreamingTV','StreamingMovies', 'Contract','PaperlessBilling', 'PaymentMethod'])])
['MonthlyCharges', 'TotalCharges', 'tenure']
SimpleImputer(strategy='median')
StandardScaler()
['SeniorCitizen', 'gender', 'Partner', 'Dependents', 'PhoneService', 'MultipleLines', 'InternetService', 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling', 'PaymentMethod']
OneHotEncoder()
LogisticRegression(class_weight='balanced', max_iter=300)