rcanand commited on
Commit
db5fda2
1 Parent(s): dc7c4f6

take 2 of lunar lander v2

Browse files
README.md CHANGED
@@ -8,16 +8,17 @@ tags:
8
  model-index:
9
  - name: PPO
10
  results:
11
- - metrics:
12
- - type: mean_reward
13
- value: 216.03 +/- 55.34
14
- name: mean_reward
15
- task:
16
  type: reinforcement-learning
17
  name: reinforcement-learning
18
  dataset:
19
  name: LunarLander-v2
20
  type: LunarLander-v2
 
 
 
 
 
21
  ---
22
 
23
  # **PPO** Agent playing **LunarLander-v2**
 
8
  model-index:
9
  - name: PPO
10
  results:
11
+ - task:
 
 
 
 
12
  type: reinforcement-learning
13
  name: reinforcement-learning
14
  dataset:
15
  name: LunarLander-v2
16
  type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 267.10 +/- 18.35
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
 
24
  # **PPO** Agent playing **LunarLander-v2**
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9c5373b5f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9c5373b680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9c5373b710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9c5373b7a0>", "_build": "<function ActorCriticPolicy._build at 0x7f9c5373b830>", "forward": "<function ActorCriticPolicy.forward at 0x7f9c5373b8c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9c5373b950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9c5373b9e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9c5373ba70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9c5373bb00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9c5373bb90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9c53761150>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1656024824.116909, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAkiPbvvNlPz/KIhk+elWXvlOn474zNlY+AAAAAAAAAACmNf+9e+iZumVVKTpe/281zy4MO5bHQ7kAAIA/AACAP41DEb4voWk/YtJwPo4AsL7fHRY+GoYnPQAAAAAAAAAAgFCRPYXj+rmj54Q6Eh9APABc3zoGTHU7AACAPwAAgD9mzgm79vx+uujb4jsO+Ge21LxauwgGYrUAAIA/AACAP82WDT6+vGs/RGihPWkUib54RNs8fXRkvQAAAAAAAAAAZqESPaarBj/dcye8+8GGvhIq/bxxN5e9AAAAAAAAAAAzXZY8XF9MuskbqrsdyZc46IBzO+pcgjgAAIA/AACAP0Bfmb0pGBG687bzOlX/07V7nKI6VSbQtAAAgD8AAIA/TQ2KveGYlLrMQSk6GicfNfM7gjptB0S5AACAPwAAgD8zqR299tAIuu0pAbn+44i0wQaEO1XYFTgAAIA/AACAP81AjL1BqWM/sOlTPvcShr4lRno8qvxjPgAAAAAAAAAAZo3CvUiphrp2ZEY6hdGDtcITIrvG5Wa5AACAPwAAgD+aaOQ8FBCLutKeebkPKG60M6DPOJQTkTgAAIA/AACAPwDTcT1cm3y6NwSpvEc5x7UYkK+6sxk0NQAAgD8AAIA/5tr2PbkyCj7163q8SahuvnfVpjwqOlg9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOzquRvbCY0CUhpRSlIwBbJRN6AOMAXSUR0CQ25H93r2QdX2UKGgGaAloD0MISMDo8ub2YkCUhpRSlGgVTegDaBZHQJDc1+PRzBB1fZQoaAZoCWgPQwiEfqZeN4xiQJSGlFKUaBVN6ANoFkdAkO39sSCe3HV9lChoBmgJaA9DCEqYaftXZGBAlIaUUpRoFU3oA2gWR0CQ7jY1He7+dX2UKGgGaAloD0MIdAgcCTTvXUCUhpRSlGgVTegDaBZHQJDveVu76Hl1fZQoaAZoCWgPQwhRpWYPtMRQQJSGlFKUaBVNCAFoFkdAkO+0KRdQf3V9lChoBmgJaA9DCLOWAtL+ml5AlIaUUpRoFU3oA2gWR0CQ8RaW5YozdX2UKGgGaAloD0MI+FROe8ocYUCUhpRSlGgVTegDaBZHQJD0XyQPqcF1fZQoaAZoCWgPQwjryJHOQA5lQJSGlFKUaBVN6ANoFkdAkPV3mJWNm3V9lChoBmgJaA9DCB+7C5SUXmdAlIaUUpRoFU3oA2gWR0CQ99e40/GEdX2UKGgGaAloD0MIOzjYmxj6P0CUhpRSlGgVS+VoFkdAkPgHhXKbKHV9lChoBmgJaA9DCDrObcK90gRAlIaUUpRoFUv4aBZHQJEAXSNOuaF1fZQoaAZoCWgPQwhrgT0m0nduQJSGlFKUaBVNUQFoFkdAkQEAElme2HV9lChoBmgJaA9DCKa6gJcZRkVAlIaUUpRoFUv7aBZHQJEFVesxO+J1fZQoaAZoCWgPQwjbhlEQPK5dQJSGlFKUaBVN6ANoFkdAkQkFPJq7AnV9lChoBmgJaA9DCFEyObWzRmRAlIaUUpRoFU3oA2gWR0CRCSHWjGkvdX2UKGgGaAloD0MItJQsJyE9YUCUhpRSlGgVTegDaBZHQJEJck8ifQN1fZQoaAZoCWgPQwi1cFmFzbFcQJSGlFKUaBVN6ANoFkdAkQ7Ls8gZCXV9lChoBmgJaA9DCEzChTyCEWBAlIaUUpRoFU3oA2gWR0CRF42U0Nz9dX2UKGgGaAloD0MI0uRiDKzgYkCUhpRSlGgVTegDaBZHQJEjuKekHlh1fZQoaAZoCWgPQwjMsieBTYFgQJSGlFKUaBVN6ANoFkdAkSRAzLwF1XV9lChoBmgJaA9DCOo/a378IWJAlIaUUpRoFU3oA2gWR0CRJbwljVhDdX2UKGgGaAloD0MIp8zNNyJbYkCUhpRSlGgVTegDaBZHQJEmIFt8/lh1fZQoaAZoCWgPQwhmaafm8tFjQJSGlFKUaBVN6ANoFkdAkTjF9KEnLXV9lChoBmgJaA9DCDelvFZCEWFAlIaUUpRoFU3oA2gWR0CROQ64UeuFdX2UKGgGaAloD0MI14hgHFzkZECUhpRSlGgVTegDaBZHQJFAZTHbRF91fZQoaAZoCWgPQwhG0JhJ1OJfQJSGlFKUaBVN6ANoFkdAkUPd0JWvKXV9lChoBmgJaA9DCB3oobaNg2JAlIaUUpRoFU3oA2gWR0CRTdgbp/wzdX2UKGgGaAloD0MI4C77dad1Y0CUhpRSlGgVTegDaBZHQJFOiiZfD1p1fZQoaAZoCWgPQwg83uS36NQlQJSGlFKUaBVNEQFoFkdAkVD5Q+EAYHV9lChoBmgJaA9DCBgK2A7GiWJAlIaUUpRoFU3oA2gWR0CRUyqcVgx8dX2UKGgGaAloD0MIkjtsIjPPXUCUhpRSlGgVTegDaBZHQJFW+lQ/HHZ1fZQoaAZoCWgPQwgmipC6HfxiQJSGlFKUaBVN6ANoFkdAkVcZRXOnmHV9lChoBmgJaA9DCFjjbDqCAmNAlIaUUpRoFU3oA2gWR0CRV2vJzT4MdX2UKGgGaAloD0MIV19dFajF7r+UhpRSlGgVS95oFkdAkVrIxtYSx3V9lChoBmgJaA9DCEPJ5NTOP1xAlIaUUpRoFU3oA2gWR0CRXOmg8KXwdX2UKGgGaAloD0MIskgT74DZZECUhpRSlGgVTegDaBZHQJFllLcsUZh1fZQoaAZoCWgPQwjWAKWhRhJnQJSGlFKUaBVN6ANoFkdAkXEGyon8bnV9lChoBmgJaA9DCDIepRIeQWRAlIaUUpRoFU3oA2gWR0CRcYQhfShKdX2UKGgGaAloD0MIpwUv+grQYUCUhpRSlGgVTegDaBZHQJFy72criER1fZQoaAZoCWgPQwioNjgR/V1iQJSGlFKUaBVN6ANoFkdAkXNS+tbLU3V9lChoBmgJaA9DCNvcmJ6wgl5AlIaUUpRoFU3oA2gWR0CRdMP+n62wdX2UKGgGaAloD0MIr2Ab8WTDY0CUhpRSlGgVTegDaBZHQJF0/6k69011fZQoaAZoCWgPQwh+xRoucutFQJSGlFKUaBVL92gWR0CRdaJGvwEydX2UKGgGaAloD0MIwD+lSpS8UECUhpRSlGgVS/RoFkdAkY+ZTER8MXV9lChoBmgJaA9DCPiImBJJd1xAlIaUUpRoFU3oA2gWR0CRkAdWhh6TdX2UKGgGaAloD0MIiNo2jIJQKkCUhpRSlGgVS/VoFkdAkZNYtxuKoHV9lChoBmgJaA9DCKm+84uSp2VAlIaUUpRoFU3oA2gWR0CRmXVJcxCZdX2UKGgGaAloD0MIwOrIkU5IYUCUhpRSlGgVTegDaBZHQJGbvwQUYbd1fZQoaAZoCWgPQwinzTgN0YFgQJSGlFKUaBVN6ANoFkdAkZ2yaiKziXV9lChoBmgJaA9DCATo9/2bEGFAlIaUUpRoFU3oA2gWR0CRoT94NZvDdX2UKGgGaAloD0MIhJ1i1aAKZkCUhpRSlGgVTegDaBZHQJGhW+mFajh1fZQoaAZoCWgPQwgydOygEkheQJSGlFKUaBVN6ANoFkdAkaGsjZ+QVHV9lChoBmgJaA9DCMYy/RJxUWFAlIaUUpRoFU3oA2gWR0CRpNz4UN8WdX2UKGgGaAloD0MIs2Dij6IEY0CUhpRSlGgVTegDaBZHQJGm04aP0Zp1fZQoaAZoCWgPQwhSmWIOgpRAQJSGlFKUaBVL52gWR0CRp+IZqEeydX2UKGgGaAloD0MIlgm/1A+ccUCUhpRSlGgVTfUBaBZHQJGqZJ8OTaF1fZQoaAZoCWgPQwgvibMiaqLlP5SGlFKUaBVL/mgWR0CRrsh6Skj5dX2UKGgGaAloD0MIEDtT6Dx9Y0CUhpRSlGgVTegDaBZHQJG5F/smfGx1fZQoaAZoCWgPQwixprIo7PRjQJSGlFKUaBVN6ANoFkdAkbrci4axYHV9lChoBmgJaA9DCH6K48Cr30ZAlIaUUpRoFU0VAWgWR0CRuu2MbWEsdX2UKGgGaAloD0MIFHe8yW+xX0CUhpRSlGgVTegDaBZHQJG7QDV6NVB1fZQoaAZoCWgPQwgHCryTTz9hQJSGlFKUaBVN6ANoFkdAkbygvHtF8XV9lChoBmgJaA9DCNQQVfgzumRAlIaUUpRoFU3oA2gWR0CRvN2hZha1dX2UKGgGaAloD0MI3nahuc78YUCUhpRSlGgVTegDaBZHQJHYlJlJ6IF1fZQoaAZoCWgPQwiy9ne2RwVLQJSGlFKUaBVNDQFoFkdAkdrMinpB5XV9lChoBmgJaA9DCItrfCb7+l1AlIaUUpRoFU3oA2gWR0CR3EAYHgP3dX2UKGgGaAloD0MIqkca3FYCaECUhpRSlGgVTegDaBZHQJHiX/ACW/t1fZQoaAZoCWgPQwilarsJPo1gQJSGlFKUaBVN6ANoFkdAkeaHVbzK93V9lChoBmgJaA9DCH7H8NjPyj9AlIaUUpRoFU0kAWgWR0CR6RU70WdmdX2UKGgGaAloD0MI0LNZ9TmVYECUhpRSlGgVTegDaBZHQJHqHrleWv91fZQoaAZoCWgPQwgOFHgnH2JiQJSGlFKUaBVN6ANoFkdAkeo1YEGJN3V9lChoBmgJaA9DCPz/OGHCrWNAlIaUUpRoFU3oA2gWR0CR7ZAJswcpdX2UKGgGaAloD0MIPkFiu/siZUCUhpRSlGgVTegDaBZHQJHvZC3PRiR1fZQoaAZoCWgPQwgmyAiocMFiQJSGlFKUaBVN6ANoFkdAkfBo/eLvTnV9lChoBmgJaA9DCATI0LGD/WBAlIaUUpRoFU3oA2gWR0CR9vHJtBOYdX2UKGgGaAloD0MIX5m36jpwNUCUhpRSlGgVTQcBaBZHQJH69O45Lh91fZQoaAZoCWgPQwiaeAd4Ur5iQJSGlFKUaBVN6ANoFkdAkgCeMl1KXnV9lChoBmgJaA9DCHf3AN2X7VtAlIaUUpRoFU3oA2gWR0CSAk80UGmldX2UKGgGaAloD0MIAvVm1PyVYUCUhpRSlGgVTegDaBZHQJICmGN70Ft1fZQoaAZoCWgPQwh+/+bFiVNjQJSGlFKUaBVN6ANoFkdAkgP98JD3NHV9lChoBmgJaA9DCPPLYIzIwmRAlIaUUpRoFU3oA2gWR0CSBD3t8eCDdX2UKGgGaAloD0MISSpTzEFcTECUhpRSlGgVS/BoFkdAkgSuSB9TgnV9lChoBmgJaA9DCCGtMeiEREFAlIaUUpRoFUvbaBZHQJIfHtE5Qxh1fZQoaAZoCWgPQwjvqgfMQ2NiQJSGlFKUaBVN6ANoFkdAkiIIZqEeyXV9lChoBmgJaA9DCMkiTbyDKWRAlIaUUpRoFU3oA2gWR0CSI4IhyKekdX2UKGgGaAloD0MIRbde0wNbYUCUhpRSlGgVTegDaBZHQJIqKq814xF1fZQoaAZoCWgPQwgna9RDtJJiQJSGlFKUaBVN6ANoFkdAki6y4rjHXHV9lChoBmgJaA9DCLadtkaEG2ZAlIaUUpRoFU3oA2gWR0CSMXOpsGgSdX2UKGgGaAloD0MIbSBdbNq2YECUhpRSlGgVTegDaBZHQJIym7TUiIN1fZQoaAZoCWgPQwiDNc6moxxkQJSGlFKUaBVN6ANoFkdAkjK5CWu5jHV9lChoBmgJaA9DCHak+s4vdmVAlIaUUpRoFU3oA2gWR0CSOKwCr92pdX2UKGgGaAloD0MIzHoxlBNHXkCUhpRSlGgVTegDaBZHQJI52PDHfdh1fZQoaAZoCWgPQwiwdD48SxgoQJSGlFKUaBVNDAFoFkdAkkFiup0fYHV9lChoBmgJaA9DCF7b2y3J611AlIaUUpRoFU3oA2gWR0CSRX68xsVMdX2UKGgGaAloD0MI/wOsVbsVY0CUhpRSlGgVTegDaBZHQJJLpWvKU3Z1fZQoaAZoCWgPQwiCyvj3mcBmQJSGlFKUaBVN6ANoFkdAkk3ga72+PHV9lChoBmgJaA9DCPJEEOfh3mBAlIaUUpRoFU3oA2gWR0CST4gQ6IWQdX2UKGgGaAloD0MIqaW5FcKOX0CUhpRSlGgVTegDaBZHQJJP0XTEzft1fZQoaAZoCWgPQwi0O6QYoNBiQJSGlFKUaBVN6ANoFkdAklBH8CPp6nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78e6838908b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78e683890940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78e6838909d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78e683890a60>", "_build": "<function ActorCriticPolicy._build at 0x78e683890af0>", "forward": "<function ActorCriticPolicy.forward at 0x78e683890b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78e683890c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78e683890ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x78e683890d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78e683890dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78e683890e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78e683890ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78e683826e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700860432063364793, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALP4n738E5U+bfsOPhwWob7nTJI8faTYuwAAAAAAAAAAM8iyvPa0Obotr2o0WYYUsGHWR7uP3YSzAACAPwAAgD9zzvw9OGKpP6IDiD6WzLG+qVskPvDxNbwAAAAAAAAAAAAGVD2POmy65JXGOqavyTXqUTY7gProuQAAAAAAAIA/jcfcvY+edLoErqw7lzLMuNQkYzkz9tK3AACAPwAAAABasr+94UCnupD+5TrpbcA1ppqXuosEBLoAAAAAAACAP4B9d75g/5s+FkDdPckqkL6yv0O8QKrNvQAAAAAAAAAATbnjvZFUdj6ynlg+CUSgvm0uT7wa7E27AAAAAAAAAABmBG48n8j/u/bharyzh/s8U3hcvU2JzT0AAIA/AACAPwAgczv2cRm8hEIyvAL1YDyix4w9Iv88vQAAgD8AAIA/mpATPrvJ+j36wQ88fcQ0vngdsj2Y69e8AAAAAAAAAADa7489bHLluxa5CD2WdTa+iUVcPKW98TwAAIA/AACAP/0ZgL5Rewa9MRMJO9EzpDkzW2s+SqMsugAAgD8AAIA/gKJRPUGyJj7mbmG8WihyvqPnXb3OFmC9AAAAAAAAAAAW/JU+S1tmPzNgTL5VtYq+puI8Pa19or0AAAAAAAAAAGbAI7wfN/a7apg/PSKpPz1UKly9plIbPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMD6NdZ7omMAWyUTXsBjAF0lEdAlv1khib2DnV9lChoBkdAbl+pEx7AtWgHTUQBaAhHQJb/AUoKD011fZQoaAZHQHID4eYD1XhoB01gAWgIR0CW/8lS0jTsdX2UKGgGR0BdMuqR2bG4aAdN6ANoCEdAlwAtUwSJ0nV9lChoBkdAcS6gnc+JQGgHTTcBaAhHQJcA2Yb83uN1fZQoaAZHQHLDY0EX+ERoB01TAWgIR0CXAY4A0bcXdX2UKGgGR0BxB9p+MIeHaAdNOgFoCEdAlwG9DYywfXV9lChoBkdAcP0yf+S8rmgHTYgBaAhHQJcB6bI91U51fZQoaAZHQHE4rrs0HhVoB00dAWgIR0CXA6uJDVpcdX2UKGgGR0BxgoYAKfFraAdNMQFoCEdAlwThOUMXrXV9lChoBkdAcAwe5WilBWgHTSYBaAhHQJcYtn13+uN1fZQoaAZHQHB3eWGATZhoB01SAWgIR0CXGdXiR4hVdX2UKGgGR0BuA5TIeYD1aAdNNwFoCEdAlxpRJd0JW3V9lChoBkdAbD7Vz6rNn2gHTVABaAhHQJca5zq8lHB1fZQoaAZHQHE3GCI1tO5oB00pAWgIR0CXG4WoWHk+dX2UKGgGR0BxlUAAAAAAaAdNYAFoCEdAlxvXJLdvbXV9lChoBkdAcozWpIczZmgHTWIBaAhHQJcc2UMXrMV1fZQoaAZHQHIdfP9kz41oB000AWgIR0CXHi1B+nZTdX2UKGgGR0BxSNnuiN83aAdNHAFoCEdAlx9AIldC3XV9lChoBkdAbu6HkcS5AmgHTSoBaAhHQJcgF36hxo91fZQoaAZHQHENi44Ia99oB01QAWgIR0CXIItBfKISdX2UKGgGR0BtKYJHAh0RaAdNRwFoCEdAlyDkRzzVc3V9lChoBkdAbv76nivPkmgHTXEBaAhHQJchIs9SuQp1fZQoaAZHQEx78OTaCcxoB00RAWgIR0CXI/hJiAlOdX2UKGgGR0BxUGCCjDbbaAdNOwFoCEdAlyQlrRBu43V9lChoBkdAcTNIhyKekGgHTSwBaAhHQJcmUjAzpHJ1fZQoaAZHQG0N22gFotdoB00dAWgIR0CXJ+ezD4xldX2UKGgGR0BwuzriVB2PaAdNYAFoCEdAlylZ2IO6NHV9lChoBkdAccx8eS0SiGgHTdABaAhHQJcpicd5prV1fZQoaAZHQG2GmFSKm9BoB01ZAWgIR0CXKlgntv4udX2UKGgGR0Bxg7dN34bkaAdNPAFoCEdAlyqL7XQMQXV9lChoBkdAbhEqwQlKLGgHTTIBaAhHQJcsa+De0ol1fZQoaAZHQHFC6NlyzX1oB00WAWgIR0CXLHgYP5HmdX2UKGgGR0BwX6cc2itaaAdNKwFoCEdAlyzwkX1rZnV9lChoBkdAcvB5z5oGp2gHTWQBaAhHQJctbyXlbNd1fZQoaAZHQG/VkrXlKbtoB00yAWgIR0CXLe5/LDAKdX2UKGgGR0BxXSMDOkckaAdNwgFoCEdAly3tbC79RHV9lChoBkdAPWFWjoIOY2gHS/ZoCEdAly6bBXS0B3V9lChoBkdAcui+t8uzyGgHTU4BaAhHQJcvEM5OrQx1fZQoaAZHQG3ztliBoVVoB002AWgIR0CXMJbz9S/CdX2UKGgGR0BwBBp+MIeHaAdNHwFoCEdAlzG0it7rs3V9lChoBkdAcs8lP8AJcGgHTS0BaAhHQJcznOObRWt1fZQoaAZHQG/801qFh5RoB01tAWgIR0CXOJ0j1PFedX2UKGgGR0BwIlPFefI0aAdNXwFoCEdAlzjXfIjnm3V9lChoBkdAcYprfLs8gmgHTTgBaAhHQJc5j6UJOWV1fZQoaAZHQHHqdP1tfoloB005AWgIR0CXOarqt5lfdX2UKGgGR0BwfAWznieeaAdNdAFoCEdAlzo9U83dbnV9lChoBkdAcOtolUp/gGgHTUABaAhHQJc6krAgxJx1fZQoaAZHQHBPuj7ALzBoB02eAWgIR0CXOuunMt9QdX2UKGgGR0BaorA1vVEvaAdN6ANoCEdAlzsMyi22HHV9lChoBkdAbtdSflIVd2gHTT4BaAhHQJc7jdBSk0t1fZQoaAZHQHF25SaVlf9oB00xAWgIR0CXPFhc7hegdX2UKGgGR0Bw2a3DvVmSaAdNXwFoCEdAlzy9fkWAPXV9lChoBkdATADPa+N96WgHS+RoCEdAlz4fTgEU03V9lChoBkdAaox5HmRvFWgHTUMBaAhHQJdAHtjTa0x1fZQoaAZHQHGujDXOGCZoB00MAmgIR0CXVcFZxJd0dX2UKGgGR0BxeOK+BYmtaAdNzQFoCEdAl1dopQUHp3V9lChoBkdAbniJkXk5qGgHTRwBaAhHQJdZAyULUkR1fZQoaAZHQG/GoKUmlZZoB007AWgIR0CXWUjxkNF0dX2UKGgGR0BsQXEETxoaaAdNHwFoCEdAl1rR06o2oHV9lChoBkdAbsU4YJmdy2gHTT4BaAhHQJdbmzmfXf91fZQoaAZHQHD+cZxaPjpoB01uAWgIR0CXW8RtgrpadX2UKGgGR0BtZPfyf+S9aAdNWwFoCEdAl1yaVyFPBXV9lChoBkdAcl+c3l0YCWgHTXEBaAhHQJdcsjOcDr91fZQoaAZHQG56RJVbRnhoB00qAWgIR0CXXPNiH6/JdX2UKGgGR0BxuHN/vv0AaAdNfwFoCEdAl11WeUY8+3V9lChoBkdAcV6kmhM8HWgHTXcBaAhHQJdeGR3eN1h1fZQoaAZHQHGtPYvnKW9oB01pAWgIR0CXXtm+0w8GdX2UKGgGR0BxlR2t+1BuaAdNPgFoCEdAl2DGVNYbKnV9lChoBkdAbnIeHzpX62gHTeMCaAhHQJdhDER8MNN1fZQoaAZHQHIcigwoLG9oB003AWgIR0CXY3czZYgadX2UKGgGR0ByAvvd/J/5aAdNHgFoCEdAl2O7MX7+DXV9lChoBkdAcTV0yxiXpmgHTSQBaAhHQJdn+qsEJSl1fZQoaAZHQHCdEQwsXi1oB00nAWgIR0CXZ/u+yquKdX2UKGgGR0Bx3ZxgiNbUaAdNcAFoCEdAl2l7bxmTT3V9lChoBkdAbuMAxSHdoGgHTT4BaAhHQJdqRQJokAx1fZQoaAZHQHKUaq4pc5doB001AWgIR0CXarlnRLK3dX2UKGgGR0BxdLiOvMbFaAdNmQFoCEdAl2tPcBU70XV9lChoBkdAcTyeFL39JmgHTU0BaAhHQJdrZvddmg91fZQoaAZHQGzfayrxRVJoB01WAWgIR0CXa4o9s7+2dX2UKGgGR0BwjqZy+6AfaAdNHgFoCEdAl2ueyAxzrHV9lChoBkdAb+95bhWHUWgHTUgBaAhHQJdsZ7gKnel1fZQoaAZHQHIl4egctGxoB01xAmgIR0CXbI1anrIHdX2UKGgGR0BwZtR2r4nGaAdNEAFoCEdAl2z1YyO7x3V9lChoBkdAba957gKnemgHTSEBaAhHQJdtsaqCHyp1fZQoaAZHQHCEgqqfe1toB00HAWgIR0CXcr5f+jubdX2UKGgGR0BwTIaJhvzfaAdNYwFoCEdAl3L9foicG3V9lChoBkdAcDkd30PH1mgHTV4CaAhHQJd0RINEw351fZQoaAZHQHIyHkYGdI5oB00pAWgIR0CXdsuDBdledX2UKGgGR0BuCy2lVLi/aAdNHAFoCEdAl3cZ6+nIhnV9lChoBkdAcCdbRnezlmgHTWYBaAhHQJd3Mq6OHWV1fZQoaAZHQG/0Z3kgfU5oB006AWgIR0CXdzOktVaPdX2UKGgGR0BwD2j2zv7WaAdNMQFoCEdAl3fHTRYzSHV9lChoBkdAblzgGbCrLmgHTTIBaAhHQJd38cOskpt1fZQoaAZHQHGos8gZCOZoB008AWgIR0CXeCTr3TNMdX2UKGgGR0BxoVHAh0QsaAdNGQFoCEdAl3h+SKWLP3V9lChoBkdAcZj/L1VYIWgHTYUBaAhHQJd5bgTAWSF1fZQoaAZHQHFGhaouPFNoB01GAWgIR0CXeZwm3OObdX2UKGgGR0Byg5DeCTUzaAdNaAFoCEdAl3wNjG1hLHV9lChoBkdAcB+9S/CZW2gHTSYBaAhHQJd+i9+PRzB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:caf10ecd671b858f105c2fcd3d99bd5ff7e2ad98114955fab0a8c885d4f296d7
3
- size 144145
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:629ee2027817de613e1f7e6fb0d57ca464038860b80bc71babbab429fb2e0c65
3
+ size 148054
ppo-LunarLander-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.5.0
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data CHANGED
@@ -1,81 +1,82 @@
1
  {
2
  "policy_class": {
3
  ":type:": "<class 'abc.ABCMeta'>",
4
- ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
- "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9c5373b5f0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9c5373b680>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9c5373b710>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9c5373b7a0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f9c5373b830>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f9c5373b8c0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9c5373b950>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f9c5373b9e0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9c5373ba70>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9c5373bb00>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9c5373bb90>",
 
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f9c53761150>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
- "observation_space": {
24
- ":type:": "<class 'gym.spaces.box.Box'>",
25
- ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
26
- "dtype": "float32",
27
- "_shape": [
28
- 8
29
- ],
30
- "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
- "high": "[inf inf inf inf inf inf inf inf]",
32
- "bounded_below": "[False False False False False False False False]",
33
- "bounded_above": "[False False False False False False False False]",
34
- "_np_random": null
35
- },
36
- "action_space": {
37
- ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
- ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
- "n": 4,
40
- "_shape": [],
41
- "dtype": "int64",
42
- "_np_random": null
43
- },
44
- "n_envs": 16,
45
  "num_timesteps": 1015808,
46
  "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1656024824.116909,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
- "lr_schedule": {
54
- ":type:": "<class 'function'>",
55
- ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
- },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAkiPbvvNlPz/KIhk+elWXvlOn474zNlY+AAAAAAAAAACmNf+9e+iZumVVKTpe/281zy4MO5bHQ7kAAIA/AACAP41DEb4voWk/YtJwPo4AsL7fHRY+GoYnPQAAAAAAAAAAgFCRPYXj+rmj54Q6Eh9APABc3zoGTHU7AACAPwAAgD9mzgm79vx+uujb4jsO+Ge21LxauwgGYrUAAIA/AACAP82WDT6+vGs/RGihPWkUib54RNs8fXRkvQAAAAAAAAAAZqESPaarBj/dcye8+8GGvhIq/bxxN5e9AAAAAAAAAAAzXZY8XF9MuskbqrsdyZc46IBzO+pcgjgAAIA/AACAP0Bfmb0pGBG687bzOlX/07V7nKI6VSbQtAAAgD8AAIA/TQ2KveGYlLrMQSk6GicfNfM7gjptB0S5AACAPwAAgD8zqR299tAIuu0pAbn+44i0wQaEO1XYFTgAAIA/AACAP81AjL1BqWM/sOlTPvcShr4lRno8qvxjPgAAAAAAAAAAZo3CvUiphrp2ZEY6hdGDtcITIrvG5Wa5AACAPwAAgD+aaOQ8FBCLutKeebkPKG60M6DPOJQTkTgAAIA/AACAPwDTcT1cm3y6NwSpvEc5x7UYkK+6sxk0NQAAgD8AAIA/5tr2PbkyCj7163q8SahuvnfVpjwqOlg9AAAAAAAAAACUdJRiLg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
  "_current_progress_remaining": -0.015808000000000044,
 
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gASVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOzquRvbCY0CUhpRSlIwBbJRN6AOMAXSUR0CQ25H93r2QdX2UKGgGaAloD0MISMDo8ub2YkCUhpRSlGgVTegDaBZHQJDc1+PRzBB1fZQoaAZoCWgPQwiEfqZeN4xiQJSGlFKUaBVN6ANoFkdAkO39sSCe3HV9lChoBmgJaA9DCEqYaftXZGBAlIaUUpRoFU3oA2gWR0CQ7jY1He7+dX2UKGgGaAloD0MIdAgcCTTvXUCUhpRSlGgVTegDaBZHQJDveVu76Hl1fZQoaAZoCWgPQwhRpWYPtMRQQJSGlFKUaBVNCAFoFkdAkO+0KRdQf3V9lChoBmgJaA9DCLOWAtL+ml5AlIaUUpRoFU3oA2gWR0CQ8RaW5YozdX2UKGgGaAloD0MI+FROe8ocYUCUhpRSlGgVTegDaBZHQJD0XyQPqcF1fZQoaAZoCWgPQwjryJHOQA5lQJSGlFKUaBVN6ANoFkdAkPV3mJWNm3V9lChoBmgJaA9DCB+7C5SUXmdAlIaUUpRoFU3oA2gWR0CQ99e40/GEdX2UKGgGaAloD0MIOzjYmxj6P0CUhpRSlGgVS+VoFkdAkPgHhXKbKHV9lChoBmgJaA9DCDrObcK90gRAlIaUUpRoFUv4aBZHQJEAXSNOuaF1fZQoaAZoCWgPQwhrgT0m0nduQJSGlFKUaBVNUQFoFkdAkQEAElme2HV9lChoBmgJaA9DCKa6gJcZRkVAlIaUUpRoFUv7aBZHQJEFVesxO+J1fZQoaAZoCWgPQwjbhlEQPK5dQJSGlFKUaBVN6ANoFkdAkQkFPJq7AnV9lChoBmgJaA9DCFEyObWzRmRAlIaUUpRoFU3oA2gWR0CRCSHWjGkvdX2UKGgGaAloD0MItJQsJyE9YUCUhpRSlGgVTegDaBZHQJEJck8ifQN1fZQoaAZoCWgPQwi1cFmFzbFcQJSGlFKUaBVN6ANoFkdAkQ7Ls8gZCXV9lChoBmgJaA9DCEzChTyCEWBAlIaUUpRoFU3oA2gWR0CRF42U0Nz9dX2UKGgGaAloD0MI0uRiDKzgYkCUhpRSlGgVTegDaBZHQJEjuKekHlh1fZQoaAZoCWgPQwjMsieBTYFgQJSGlFKUaBVN6ANoFkdAkSRAzLwF1XV9lChoBmgJaA9DCOo/a378IWJAlIaUUpRoFU3oA2gWR0CRJbwljVhDdX2UKGgGaAloD0MIp8zNNyJbYkCUhpRSlGgVTegDaBZHQJEmIFt8/lh1fZQoaAZoCWgPQwhmaafm8tFjQJSGlFKUaBVN6ANoFkdAkTjF9KEnLXV9lChoBmgJaA9DCDelvFZCEWFAlIaUUpRoFU3oA2gWR0CROQ64UeuFdX2UKGgGaAloD0MI14hgHFzkZECUhpRSlGgVTegDaBZHQJFAZTHbRF91fZQoaAZoCWgPQwhG0JhJ1OJfQJSGlFKUaBVN6ANoFkdAkUPd0JWvKXV9lChoBmgJaA9DCB3oobaNg2JAlIaUUpRoFU3oA2gWR0CRTdgbp/wzdX2UKGgGaAloD0MI4C77dad1Y0CUhpRSlGgVTegDaBZHQJFOiiZfD1p1fZQoaAZoCWgPQwg83uS36NQlQJSGlFKUaBVNEQFoFkdAkVD5Q+EAYHV9lChoBmgJaA9DCBgK2A7GiWJAlIaUUpRoFU3oA2gWR0CRUyqcVgx8dX2UKGgGaAloD0MIkjtsIjPPXUCUhpRSlGgVTegDaBZHQJFW+lQ/HHZ1fZQoaAZoCWgPQwgmipC6HfxiQJSGlFKUaBVN6ANoFkdAkVcZRXOnmHV9lChoBmgJaA9DCFjjbDqCAmNAlIaUUpRoFU3oA2gWR0CRV2vJzT4MdX2UKGgGaAloD0MIV19dFajF7r+UhpRSlGgVS95oFkdAkVrIxtYSx3V9lChoBmgJaA9DCEPJ5NTOP1xAlIaUUpRoFU3oA2gWR0CRXOmg8KXwdX2UKGgGaAloD0MIskgT74DZZECUhpRSlGgVTegDaBZHQJFllLcsUZh1fZQoaAZoCWgPQwjWAKWhRhJnQJSGlFKUaBVN6ANoFkdAkXEGyon8bnV9lChoBmgJaA9DCDIepRIeQWRAlIaUUpRoFU3oA2gWR0CRcYQhfShKdX2UKGgGaAloD0MIpwUv+grQYUCUhpRSlGgVTegDaBZHQJFy72criER1fZQoaAZoCWgPQwioNjgR/V1iQJSGlFKUaBVN6ANoFkdAkXNS+tbLU3V9lChoBmgJaA9DCNvcmJ6wgl5AlIaUUpRoFU3oA2gWR0CRdMP+n62wdX2UKGgGaAloD0MIr2Ab8WTDY0CUhpRSlGgVTegDaBZHQJF0/6k69011fZQoaAZoCWgPQwh+xRoucutFQJSGlFKUaBVL92gWR0CRdaJGvwEydX2UKGgGaAloD0MIwD+lSpS8UECUhpRSlGgVS/RoFkdAkY+ZTER8MXV9lChoBmgJaA9DCPiImBJJd1xAlIaUUpRoFU3oA2gWR0CRkAdWhh6TdX2UKGgGaAloD0MIiNo2jIJQKkCUhpRSlGgVS/VoFkdAkZNYtxuKoHV9lChoBmgJaA9DCKm+84uSp2VAlIaUUpRoFU3oA2gWR0CRmXVJcxCZdX2UKGgGaAloD0MIwOrIkU5IYUCUhpRSlGgVTegDaBZHQJGbvwQUYbd1fZQoaAZoCWgPQwinzTgN0YFgQJSGlFKUaBVN6ANoFkdAkZ2yaiKziXV9lChoBmgJaA9DCATo9/2bEGFAlIaUUpRoFU3oA2gWR0CRoT94NZvDdX2UKGgGaAloD0MIhJ1i1aAKZkCUhpRSlGgVTegDaBZHQJGhW+mFajh1fZQoaAZoCWgPQwgydOygEkheQJSGlFKUaBVN6ANoFkdAkaGsjZ+QVHV9lChoBmgJaA9DCMYy/RJxUWFAlIaUUpRoFU3oA2gWR0CRpNz4UN8WdX2UKGgGaAloD0MIs2Dij6IEY0CUhpRSlGgVTegDaBZHQJGm04aP0Zp1fZQoaAZoCWgPQwhSmWIOgpRAQJSGlFKUaBVL52gWR0CRp+IZqEeydX2UKGgGaAloD0MIlgm/1A+ccUCUhpRSlGgVTfUBaBZHQJGqZJ8OTaF1fZQoaAZoCWgPQwgvibMiaqLlP5SGlFKUaBVL/mgWR0CRrsh6Skj5dX2UKGgGaAloD0MIEDtT6Dx9Y0CUhpRSlGgVTegDaBZHQJG5F/smfGx1fZQoaAZoCWgPQwixprIo7PRjQJSGlFKUaBVN6ANoFkdAkbrci4axYHV9lChoBmgJaA9DCH6K48Cr30ZAlIaUUpRoFU0VAWgWR0CRuu2MbWEsdX2UKGgGaAloD0MIFHe8yW+xX0CUhpRSlGgVTegDaBZHQJG7QDV6NVB1fZQoaAZoCWgPQwgHCryTTz9hQJSGlFKUaBVN6ANoFkdAkbygvHtF8XV9lChoBmgJaA9DCNQQVfgzumRAlIaUUpRoFU3oA2gWR0CRvN2hZha1dX2UKGgGaAloD0MI3nahuc78YUCUhpRSlGgVTegDaBZHQJHYlJlJ6IF1fZQoaAZoCWgPQwiy9ne2RwVLQJSGlFKUaBVNDQFoFkdAkdrMinpB5XV9lChoBmgJaA9DCItrfCb7+l1AlIaUUpRoFU3oA2gWR0CR3EAYHgP3dX2UKGgGaAloD0MIqkca3FYCaECUhpRSlGgVTegDaBZHQJHiX/ACW/t1fZQoaAZoCWgPQwilarsJPo1gQJSGlFKUaBVN6ANoFkdAkeaHVbzK93V9lChoBmgJaA9DCH7H8NjPyj9AlIaUUpRoFU0kAWgWR0CR6RU70WdmdX2UKGgGaAloD0MI0LNZ9TmVYECUhpRSlGgVTegDaBZHQJHqHrleWv91fZQoaAZoCWgPQwgOFHgnH2JiQJSGlFKUaBVN6ANoFkdAkeo1YEGJN3V9lChoBmgJaA9DCPz/OGHCrWNAlIaUUpRoFU3oA2gWR0CR7ZAJswcpdX2UKGgGaAloD0MIPkFiu/siZUCUhpRSlGgVTegDaBZHQJHvZC3PRiR1fZQoaAZoCWgPQwgmyAiocMFiQJSGlFKUaBVN6ANoFkdAkfBo/eLvTnV9lChoBmgJaA9DCATI0LGD/WBAlIaUUpRoFU3oA2gWR0CR9vHJtBOYdX2UKGgGaAloD0MIX5m36jpwNUCUhpRSlGgVTQcBaBZHQJH69O45Lh91fZQoaAZoCWgPQwiaeAd4Ur5iQJSGlFKUaBVN6ANoFkdAkgCeMl1KXnV9lChoBmgJaA9DCHf3AN2X7VtAlIaUUpRoFU3oA2gWR0CSAk80UGmldX2UKGgGaAloD0MIAvVm1PyVYUCUhpRSlGgVTegDaBZHQJICmGN70Ft1fZQoaAZoCWgPQwh+/+bFiVNjQJSGlFKUaBVN6ANoFkdAkgP98JD3NHV9lChoBmgJaA9DCPPLYIzIwmRAlIaUUpRoFU3oA2gWR0CSBD3t8eCDdX2UKGgGaAloD0MISSpTzEFcTECUhpRSlGgVS/BoFkdAkgSuSB9TgnV9lChoBmgJaA9DCCGtMeiEREFAlIaUUpRoFUvbaBZHQJIfHtE5Qxh1fZQoaAZoCWgPQwjvqgfMQ2NiQJSGlFKUaBVN6ANoFkdAkiIIZqEeyXV9lChoBmgJaA9DCMkiTbyDKWRAlIaUUpRoFU3oA2gWR0CSI4IhyKekdX2UKGgGaAloD0MIRbde0wNbYUCUhpRSlGgVTegDaBZHQJIqKq814xF1fZQoaAZoCWgPQwgna9RDtJJiQJSGlFKUaBVN6ANoFkdAki6y4rjHXHV9lChoBmgJaA9DCLadtkaEG2ZAlIaUUpRoFU3oA2gWR0CSMXOpsGgSdX2UKGgGaAloD0MIbSBdbNq2YECUhpRSlGgVTegDaBZHQJIym7TUiIN1fZQoaAZoCWgPQwiDNc6moxxkQJSGlFKUaBVN6ANoFkdAkjK5CWu5jHV9lChoBmgJaA9DCHak+s4vdmVAlIaUUpRoFU3oA2gWR0CSOKwCr92pdX2UKGgGaAloD0MIzHoxlBNHXkCUhpRSlGgVTegDaBZHQJI52PDHfdh1fZQoaAZoCWgPQwiwdD48SxgoQJSGlFKUaBVNDAFoFkdAkkFiup0fYHV9lChoBmgJaA9DCF7b2y3J611AlIaUUpRoFU3oA2gWR0CSRX68xsVMdX2UKGgGaAloD0MI/wOsVbsVY0CUhpRSlGgVTegDaBZHQJJLpWvKU3Z1fZQoaAZoCWgPQwiCyvj3mcBmQJSGlFKUaBVN6ANoFkdAkk3ga72+PHV9lChoBmgJaA9DCPJEEOfh3mBAlIaUUpRoFU3oA2gWR0CST4gQ6IWQdX2UKGgGaAloD0MIqaW5FcKOX0CUhpRSlGgVTegDaBZHQJJP0XTEzft1fZQoaAZoCWgPQwi0O6QYoNBiQJSGlFKUaBVN6ANoFkdAklBH8CPp6nVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
- ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 248,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
@@ -86,9 +87,13 @@
86
  "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
- ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
  },
91
  "clip_range_vf": null,
92
  "normalize_advantage": true,
93
- "target_kl": null
 
 
 
 
94
  }
 
1
  {
2
  "policy_class": {
3
  ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x78e6838908b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78e683890940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78e6838909d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78e683890a60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x78e683890af0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x78e683890b80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x78e683890c10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78e683890ca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x78e683890d30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78e683890dc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78e683890e50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x78e683890ee0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x78e683826e00>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  "num_timesteps": 1015808,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1700860432063364793,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
 
 
 
 
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALP4n738E5U+bfsOPhwWob7nTJI8faTYuwAAAAAAAAAAM8iyvPa0Obotr2o0WYYUsGHWR7uP3YSzAACAPwAAgD9zzvw9OGKpP6IDiD6WzLG+qVskPvDxNbwAAAAAAAAAAAAGVD2POmy65JXGOqavyTXqUTY7gProuQAAAAAAAIA/jcfcvY+edLoErqw7lzLMuNQkYzkz9tK3AACAPwAAAABasr+94UCnupD+5TrpbcA1ppqXuosEBLoAAAAAAACAP4B9d75g/5s+FkDdPckqkL6yv0O8QKrNvQAAAAAAAAAATbnjvZFUdj6ynlg+CUSgvm0uT7wa7E27AAAAAAAAAABmBG48n8j/u/bharyzh/s8U3hcvU2JzT0AAIA/AACAPwAgczv2cRm8hEIyvAL1YDyix4w9Iv88vQAAgD8AAIA/mpATPrvJ+j36wQ88fcQ0vngdsj2Y69e8AAAAAAAAAADa7489bHLluxa5CD2WdTa+iUVcPKW98TwAAIA/AACAP/0ZgL5Rewa9MRMJO9EzpDkzW2s+SqMsugAAgD8AAIA/gKJRPUGyJj7mbmG8WihyvqPnXb3OFmC9AAAAAAAAAAAW/JU+S1tmPzNgTL5VtYq+puI8Pa19or0AAAAAAAAAAGbAI7wfN/a7apg/PSKpPz1UKly9plIbPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
  "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMD6NdZ7omMAWyUTXsBjAF0lEdAlv1khib2DnV9lChoBkdAbl+pEx7AtWgHTUQBaAhHQJb/AUoKD011fZQoaAZHQHID4eYD1XhoB01gAWgIR0CW/8lS0jTsdX2UKGgGR0BdMuqR2bG4aAdN6ANoCEdAlwAtUwSJ0nV9lChoBkdAcS6gnc+JQGgHTTcBaAhHQJcA2Yb83uN1fZQoaAZHQHLDY0EX+ERoB01TAWgIR0CXAY4A0bcXdX2UKGgGR0BxB9p+MIeHaAdNOgFoCEdAlwG9DYywfXV9lChoBkdAcP0yf+S8rmgHTYgBaAhHQJcB6bI91U51fZQoaAZHQHE4rrs0HhVoB00dAWgIR0CXA6uJDVpcdX2UKGgGR0BxgoYAKfFraAdNMQFoCEdAlwThOUMXrXV9lChoBkdAcAwe5WilBWgHTSYBaAhHQJcYtn13+uN1fZQoaAZHQHB3eWGATZhoB01SAWgIR0CXGdXiR4hVdX2UKGgGR0BuA5TIeYD1aAdNNwFoCEdAlxpRJd0JW3V9lChoBkdAbD7Vz6rNn2gHTVABaAhHQJca5zq8lHB1fZQoaAZHQHE3GCI1tO5oB00pAWgIR0CXG4WoWHk+dX2UKGgGR0BxlUAAAAAAaAdNYAFoCEdAlxvXJLdvbXV9lChoBkdAcozWpIczZmgHTWIBaAhHQJcc2UMXrMV1fZQoaAZHQHIdfP9kz41oB000AWgIR0CXHi1B+nZTdX2UKGgGR0BxSNnuiN83aAdNHAFoCEdAlx9AIldC3XV9lChoBkdAbu6HkcS5AmgHTSoBaAhHQJcgF36hxo91fZQoaAZHQHENi44Ia99oB01QAWgIR0CXIItBfKISdX2UKGgGR0BtKYJHAh0RaAdNRwFoCEdAlyDkRzzVc3V9lChoBkdAbv76nivPkmgHTXEBaAhHQJchIs9SuQp1fZQoaAZHQEx78OTaCcxoB00RAWgIR0CXI/hJiAlOdX2UKGgGR0BxUGCCjDbbaAdNOwFoCEdAlyQlrRBu43V9lChoBkdAcTNIhyKekGgHTSwBaAhHQJcmUjAzpHJ1fZQoaAZHQG0N22gFotdoB00dAWgIR0CXJ+ezD4xldX2UKGgGR0BwuzriVB2PaAdNYAFoCEdAlylZ2IO6NHV9lChoBkdAccx8eS0SiGgHTdABaAhHQJcpicd5prV1fZQoaAZHQG2GmFSKm9BoB01ZAWgIR0CXKlgntv4udX2UKGgGR0Bxg7dN34bkaAdNPAFoCEdAlyqL7XQMQXV9lChoBkdAbhEqwQlKLGgHTTIBaAhHQJcsa+De0ol1fZQoaAZHQHFC6NlyzX1oB00WAWgIR0CXLHgYP5HmdX2UKGgGR0BwX6cc2itaaAdNKwFoCEdAlyzwkX1rZnV9lChoBkdAcvB5z5oGp2gHTWQBaAhHQJctbyXlbNd1fZQoaAZHQG/VkrXlKbtoB00yAWgIR0CXLe5/LDAKdX2UKGgGR0BxXSMDOkckaAdNwgFoCEdAly3tbC79RHV9lChoBkdAPWFWjoIOY2gHS/ZoCEdAly6bBXS0B3V9lChoBkdAcui+t8uzyGgHTU4BaAhHQJcvEM5OrQx1fZQoaAZHQG3ztliBoVVoB002AWgIR0CXMJbz9S/CdX2UKGgGR0BwBBp+MIeHaAdNHwFoCEdAlzG0it7rs3V9lChoBkdAcs8lP8AJcGgHTS0BaAhHQJcznOObRWt1fZQoaAZHQG/801qFh5RoB01tAWgIR0CXOJ0j1PFedX2UKGgGR0BwIlPFefI0aAdNXwFoCEdAlzjXfIjnm3V9lChoBkdAcYprfLs8gmgHTTgBaAhHQJc5j6UJOWV1fZQoaAZHQHHqdP1tfoloB005AWgIR0CXOarqt5lfdX2UKGgGR0BwfAWznieeaAdNdAFoCEdAlzo9U83dbnV9lChoBkdAcOtolUp/gGgHTUABaAhHQJc6krAgxJx1fZQoaAZHQHBPuj7ALzBoB02eAWgIR0CXOuunMt9QdX2UKGgGR0BaorA1vVEvaAdN6ANoCEdAlzsMyi22HHV9lChoBkdAbtdSflIVd2gHTT4BaAhHQJc7jdBSk0t1fZQoaAZHQHF25SaVlf9oB00xAWgIR0CXPFhc7hegdX2UKGgGR0Bw2a3DvVmSaAdNXwFoCEdAlzy9fkWAPXV9lChoBkdATADPa+N96WgHS+RoCEdAlz4fTgEU03V9lChoBkdAaox5HmRvFWgHTUMBaAhHQJdAHtjTa0x1fZQoaAZHQHGujDXOGCZoB00MAmgIR0CXVcFZxJd0dX2UKGgGR0BxeOK+BYmtaAdNzQFoCEdAl1dopQUHp3V9lChoBkdAbniJkXk5qGgHTRwBaAhHQJdZAyULUkR1fZQoaAZHQG/GoKUmlZZoB007AWgIR0CXWUjxkNF0dX2UKGgGR0BsQXEETxoaaAdNHwFoCEdAl1rR06o2oHV9lChoBkdAbsU4YJmdy2gHTT4BaAhHQJdbmzmfXf91fZQoaAZHQHD+cZxaPjpoB01uAWgIR0CXW8RtgrpadX2UKGgGR0BtZPfyf+S9aAdNWwFoCEdAl1yaVyFPBXV9lChoBkdAcl+c3l0YCWgHTXEBaAhHQJdcsjOcDr91fZQoaAZHQG56RJVbRnhoB00qAWgIR0CXXPNiH6/JdX2UKGgGR0BxuHN/vv0AaAdNfwFoCEdAl11WeUY8+3V9lChoBkdAcV6kmhM8HWgHTXcBaAhHQJdeGR3eN1h1fZQoaAZHQHGtPYvnKW9oB01pAWgIR0CXXtm+0w8GdX2UKGgGR0BxlR2t+1BuaAdNPgFoCEdAl2DGVNYbKnV9lChoBkdAbnIeHzpX62gHTeMCaAhHQJdhDER8MNN1fZQoaAZHQHIcigwoLG9oB003AWgIR0CXY3czZYgadX2UKGgGR0ByAvvd/J/5aAdNHgFoCEdAl2O7MX7+DXV9lChoBkdAcTV0yxiXpmgHTSQBaAhHQJdn+qsEJSl1fZQoaAZHQHCdEQwsXi1oB00nAWgIR0CXZ/u+yquKdX2UKGgGR0Bx3ZxgiNbUaAdNcAFoCEdAl2l7bxmTT3V9lChoBkdAbuMAxSHdoGgHTT4BaAhHQJdqRQJokAx1fZQoaAZHQHKUaq4pc5doB001AWgIR0CXarlnRLK3dX2UKGgGR0BxdLiOvMbFaAdNmQFoCEdAl2tPcBU70XV9lChoBkdAcTyeFL39JmgHTU0BaAhHQJdrZvddmg91fZQoaAZHQGzfayrxRVJoB01WAWgIR0CXa4o9s7+2dX2UKGgGR0BwjqZy+6AfaAdNHgFoCEdAl2ueyAxzrHV9lChoBkdAb+95bhWHUWgHTUgBaAhHQJdsZ7gKnel1fZQoaAZHQHIl4egctGxoB01xAmgIR0CXbI1anrIHdX2UKGgGR0BwZtR2r4nGaAdNEAFoCEdAl2z1YyO7x3V9lChoBkdAba957gKnemgHTSEBaAhHQJdtsaqCHyp1fZQoaAZHQHCEgqqfe1toB00HAWgIR0CXcr5f+jubdX2UKGgGR0BwTIaJhvzfaAdNYwFoCEdAl3L9foicG3V9lChoBkdAcDkd30PH1mgHTV4CaAhHQJd0RINEw351fZQoaAZHQHIyHkYGdI5oB00pAWgIR0CXdsuDBdledX2UKGgGR0BuCy2lVLi/aAdNHAFoCEdAl3cZ6+nIhnV9lChoBkdAcCdbRnezlmgHTWYBaAhHQJd3Mq6OHWV1fZQoaAZHQG/0Z3kgfU5oB006AWgIR0CXdzOktVaPdX2UKGgGR0BwD2j2zv7WaAdNMQFoCEdAl3fHTRYzSHV9lChoBkdAblzgGbCrLmgHTTIBaAhHQJd38cOskpt1fZQoaAZHQHGos8gZCOZoB008AWgIR0CXeCTr3TNMdX2UKGgGR0BxoVHAh0QsaAdNGQFoCEdAl3h+SKWLP3V9lChoBkdAcZj/L1VYIWgHTYUBaAhHQJd5bgTAWSF1fZQoaAZHQHFGhaouPFNoB01GAWgIR0CXeZwm3OObdX2UKGgGR0Byg5DeCTUzaAdNaAFoCEdAl3wNjG1hLHV9lChoBkdAcB+9S/CZW2gHTSYBaAhHQJd+i9+PRzB1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 256,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.98,
 
87
  "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b5ae0812df050c057fefb4098a802eeacf15726cdc851826b8620417752ba5f7
3
- size 84829
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73da8c1678546b7d3bdfbf49fe8c2ea7b316c9983dde9bde94d9eb344cfa0f29
3
+ size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cd8f5cef58bc5dd2aca97aa43b1e67cb0ff07c54ee8d9b3774b8b40016f157e2
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dc382ef8894ecec31418486b688aba6a4677b1e3b4c21f974fc8d61326c8241
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
- size 431
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,9 @@
1
- OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
- Python: 3.7.13
3
- Stable-Baselines3: 1.5.0
4
- PyTorch: 1.11.0+cu113
5
- GPU Enabled: True
6
- Numpy: 1.21.6
7
- Gym: 0.21.0
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d1f83115d020ea68e2bb2d1ba74d4435e1fab4327880fb0ceedc3cd0efa56b09
3
- size 216651
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7c12baaf58b68d493e656c8a58ac6ded1a0f1e0fcaa91c307f2e1e1229efd07
3
+ size 188851
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 216.02963383130987, "std_reward": 55.33812785435589, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-23T23:31:21.938465"}
 
1
+ {"mean_reward": 267.0951868, "std_reward": 18.351103954732924, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-24T22:36:09.918659"}