File size: 18,922 Bytes
a7bd119 cc33ca4 a7bd119 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import math
import warnings
import hashlib
import os
from typing import List, Optional, Tuple, Union
from dataclasses import dataclass
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.models.llama.modeling_llama import LlamaModel, LlamaPreTrainedModel, LlamaForCausalLM
from transformers.models.gemma.modeling_gemma import GemmaModel, GemmaPreTrainedModel, GemmaForCausalLM
from transformers.models.qwen2.modeling_qwen2 import Qwen2Model, Qwen2PreTrainedModel, Qwen2ForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.cache_utils import Cache
# from models.modeling_gemma import GemmaForCausalLM
# from models.modeling_qwen2 import Qwen2ForCausalLM
def svd_with_cache(matrix, cache_dir, max_rank=1024):
"""
SVD with cache mechanism to avoid repeated SVD computation.
SVD can be very slow for large matrices, so we cache the results.
"""
in_dim, out_dim = matrix.shape
# slice_weight = matrix[::1000, :] # too sensitive to precision
# weight_hash = hashlib.md5(slice_weight.detach().cpu().numpy().tobytes()).hexdigest()
weight_hash = in_dim * out_dim
cache_file = os.path.join(cache_dir, f'{weight_hash}.pt')
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)
if os.path.exists(cache_file):
# Load cached SVD results
U, S, Vh = torch.load(cache_file)
else:
# Perform SVD and cache the results
U, S, Vh = torch.linalg.svd(matrix.float())
U = U[:, :max_rank].clone() # Shape: [out_features, rank]
S = S[:max_rank].clone() # Shape: [rank]
Vh = Vh[:max_rank, :].clone() # Shape: [rank, in_features]
# Save the SVD results to cache
torch.save((U, S, Vh), cache_file)
return U, S, Vh
def create_factorized_compression_for_linear(source_linear, rank, svd_cache_dir='experiment_cache/'):
"""
Adapt from: https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/cli_svd.py
Create a factorized compression for a given linear layer using SVD.
Args:
source_linear (nn.Linear): The original linear layer to be compressed.
rank (int, optional): The rank for the factorization. If None, it will be calculated based on rank_factor.
rank_factor (float, optional): The factor to determine the rank if rank is not provided. Default is 0.3.
Returns:
nn.Sequential: A sequential container of the compressed linear layers.
"""
with torch.no_grad():
dtype = source_linear.weight.dtype
# Check if the source linear layer has a bias term
if hasattr(source_linear, 'bias'):
bias = source_linear.bias
else:
bias = None
# Calculate the total number of parameters in the source linear layer
source_num_params = sum(param.numel() for param in source_linear.parameters())
# Get the weight matrix of the source linear layer
source_linear_weight = source_linear.weight.data
# Ensure rank is less than the minimum dimension of the weight matrix
assert rank < min(source_linear_weight.shape)
# Perform SVD on the weight matrix
# U, S, Vh = torch.linalg.svd(source_linear_weight.float())
U, S, Vh = svd_with_cache(source_linear_weight, svd_cache_dir)
# Truncate U, S, Vh to the specified rank
U = U[:, :rank].contiguous() # Shape: [out_features, rank]
S = S[:rank].contiguous() # Shape: [rank]
Vh = Vh[:rank, :].contiguous() # Shape: [rank, in_features]
# Incorporate singular values into U
U = U @ torch.diag(S) # Shape: [out_features, rank]
# Flatten U and Vh for quantile computation
U_flatten = U.flatten()
Vh_flatten = Vh.flatten()
# Define the maximum quantization size
max_quant_size = 2**23
# Compute high and low quantile values for clamping
if len(U_flatten) + len(Vh_flatten) >= max_quant_size:
dist2 = U_flatten[:min(len(U_flatten), max_quant_size)]
dist3 = Vh_flatten[:min(len(Vh_flatten), max_quant_size)]
hi_val = max(torch.quantile(dist3, 1), torch.quantile(dist2, 1))
else:
dist = torch.cat([U_flatten, Vh_flatten])
hi_val = torch.quantile(dist, 1)
low_val = -hi_val
# Clamp U and Vh to the quantile values
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
# Create the down projection linear layer (Vh)
lora_down = nn.Linear(Vh.shape[1], Vh.shape[0], dtype=dtype, bias=False, device=source_linear_weight.device)
lora_down.weight.data = Vh.to(device=source_linear_weight.device, dtype=dtype)
# Create the up projection linear layer (U)
lora_up = nn.Linear(U.shape[1], U.shape[0], dtype=dtype, bias=bias is not None, device=source_linear_weight.device)
lora_up.weight.data = U.to(device=source_linear_weight.device, dtype=dtype)
# If the original linear layer had a bias, copy it to the up projection layer
if bias is not None:
lora_up.bias = nn.Parameter(bias.clone())
# Print compression ratio (for debugging purposes)
#print('compression', sum(param.numel() for param in ret.parameters()) / source_num_params)
return lora_down, lora_up
@dataclass
class AdaCausalLMOutputWithPast(CausalLMOutputWithPast):
# keep original `loss` for `training_step` and `predictions_step`,
# Add 3 sub losses: `lm_loss`, `mask_loss`, `topk_loss`
# add `lm_head_logits` for original lm_head logits, which is optional (required for train and eval, not required for generation)
lm_head_logits: Optional[torch.FloatTensor] = None
lm_loss: Optional[torch.FloatTensor] = None
mask_loss: Optional[torch.FloatTensor] = None
topk_loss: Optional[torch.FloatTensor] = None
class AdaVocabHead_MLP(nn.Module):
# No improvement compare to LoRA solution
def __init__(self, lm_head, sub_vocab_dim, activation_func=torch.nn.GELU()):
hidden_size, vocab_size = lm_head.in_features, lm_head.out_features
super().__init__()
self.A = nn.Linear(hidden_size, sub_vocab_dim, bias=False)
self.B = nn.Linear(sub_vocab_dim, sub_vocab_dim, bias=True)
self.C = nn.Linear(sub_vocab_dim, vocab_size, bias=False)
std_dev = 1 / math.sqrt(sub_vocab_dim)
nn.init.normal_(self.A.weight, 0, std_dev)
nn.init.normal_(self.B.weight, 0, std_dev)
nn.init.zeros_(self.C.weight)
self.activation_func = activation_func
def forward(self, x):
# x.shape: (..., hidden_size),
# A.shape: (hidden_size, sub_vocab_dim)
# B.shape: (sub_vocab_dim, sub_vocab_dim)
# C.shape: (sub_vocab_dim, vocab_size)
logits = self.A(x) # logits.shape: (..., sub_vocab_dim)
logits = self.activation_func(logits)
logits = self.B(logits) # logits.shape: (..., sub_vocab_dim)
# logits = self.activation_func(logits)
ada_vocab_logits = self.C(logits) # ada_vocab_logits.shape: (..., vocab_size)
return ada_vocab_logits
class AdaVocabHead_LORA(nn.Module):
def __init__(self, lm_head, sub_vocab_dim, svd=False):
hidden_size, vocab_size = lm_head.in_features, lm_head.out_features
super().__init__()
if svd: # SVD initialization
self.A, self.B = create_factorized_compression_for_linear(lm_head, sub_vocab_dim)
else: # Random initialization
self.A = nn.Linear(hidden_size, sub_vocab_dim, bias=False)
self.B = nn.Linear(sub_vocab_dim, vocab_size, bias=False)
std_dev = 1 / math.sqrt(sub_vocab_dim)
nn.init.normal_(self.A.weight, 0, std_dev)
nn.init.zeros_(self.B.weight)
def forward(self, x):
# x.shape: (..., hidden_size), A.shape: (hidden_size, sub_vocab_dim), B.shape: (sub_vocab_dim, vocab_size)
logits = self.A(x)
ada_vocab_logits = self.B(logits) # ada_vocab_logits.shape: (..., vocab_size)
return ada_vocab_logits
def create_AdaVocabCausalLM(base_class): # Support LLama, Qwen2, Gemma
class AdaVocabCausalLM(base_class):
# TODO: Check the function of this variable and if it affects the AdaVocab Head model
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.sub_vocab_dim = config.ADA_DIM
self.offload_tag = False
# AdaVocabHead is already initialized with random weights/ SVD weights
# so no need to use `self.post_init` method after this
if config.ADA_ACT:
self.adavocab_head = AdaVocabHead_MLP(self.lm_head, self.sub_vocab_dim, activation_func=nn.GELU())
else:
self.adavocab_head = AdaVocabHead_LORA(self.lm_head, self.sub_vocab_dim, svd=config.ADA_SVD)
self.freeze_original_model()
def freeze_original_model(self):
# freeze orginal llama except AdaVocabHead
for param in self.model.parameters():
param.requires_grad = False
for param in self.lm_head.parameters():
param.requires_grad = False
for param in self.adavocab_head.parameters():
param.requires_grad = True
def offload_lm_head(self):
self.offload_tag = True
self.lm_head = self.lm_head.to(torch.device('cpu'))
def topk_mask(self, logits):
# logits.shape: (batch_size, seq_len, vocab_size)
topk_values, topk_indices = torch.topk(logits, self.config.ADA_TOPK, dim=-1)
# topk_values.shape, topk_indices.shape: (batch_size, seq_len, topK)
mask = torch.zeros_like(logits) # (batch_size, seq_len, vocab_size)
# Only in top-k positions, put 1 to the corresponding position
mask.scatter_(dim=-1, index=topk_indices, src=torch.ones_like(mask))
return mask
def pred_with_sliced_lm_head_simple(self, ada_logits, hidden_states):
# nll_loss = None
# Limit activated tokens to ADA_TOPK during inference
# ada_logits_mask = self.topk_mask(ada_logits) # (batch_size, seq_len, vocab_size)
ada_logits, topk_indices = torch.topk(ada_logits, self.config.ADA_TOPK, dim=-1) # ada_logits: # (batch_size, seq_len, vocab_size) = # (batch_size, 1, vocab_size)
# ada_logits = ada_logits * ada_logits_mask # (batch_size, seq_len, vocab_size)
# ada_logits = topk_values
# batch_size, seq_len, vocab_size = ada_logits.size()
gt_zero_pos = torch.nonzero(ada_logits[:, -1, :] > 0, as_tuple=True)[-1].shape[0]
ada_index_slice = topk_indices[:, :, :gt_zero_pos].flatten().to(self.lm_head.weight.device) # equivalent to `sigmoid(ada_logits) > 0.5`
# union_ada_index_slice = torch.unique(ada_index_slice).to(self.lm_head.weight.device) # torch_size([union_size])
sliced_lm_head_weight = self.lm_head.weight[ada_index_slice, :].contiguous().to(hidden_states.device) # torch.Size([union_size, hidden_size])
lm_logits_sliced = hidden_states @ sliced_lm_head_weight.T # (batch_size, seq_len, union_size)
return lm_logits_sliced, ada_index_slice
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None, # TODO: check the effect of this new variable
) -> Union[Tuple, CausalLMOutputWithPast]:
# TODO: How does forward know whether is training or inference?
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0] # hidden_states.shape: (batch_size, seq_len, hidden_size)
batch_size, seq_len, _ = hidden_states.size()
vocab_size = self.lm_head.weight.shape[0]
# This activation could be very large during training if vocab_size is large,
# but in inference, storing activation is not needed
# TINGYUAN
self.adavocab_head.A.to(hidden_states.device)
self.adavocab_head.B.to(hidden_states.device)
ada_logits = self.adavocab_head(hidden_states[:, -1:, :]) # (batch_size, seq_len, vocab_size)
# ada_logits = ada_logits.float()
self.adavocab_head.A.to("cpu")
self.adavocab_head.B.to("cpu")
lm_head_logits = None
lm_loss, mask_loss, topk_loss = None, None, None
loss = None
if labels is not None: # For prediction_step, training_step. Not for generation
# ------ Only for Training and Eval Loop------
# During Inference, we don't need self.lm_head in GPU memory
lm_head_logits = self.lm_head(hidden_states) # (batch_size, seq_len, vocab_size)
lm_head_logits = lm_head_logits.float()
# -------------------------------
# Supervised Signal of `self.adavocab_head` from two sources:
# 1. (Primary) BCEWithLogitsLoss between ada_logits and topk_gt_mask (distillation signal)
# 2. CrossEntropyLoss between ada_logits and labels with constraint (from ground truth labels)
if self.training: # training_step
# Loss from the second source
# Shift so that tokens < n predict n
shift_logits = ada_logits[..., :-1, :].contiguous() # (batch_size, seq_len - 1, vocab_size)
shift_labels = labels[..., 1:].contiguous() # (batch_size, seq_len - 1)
# Flatten the tokens
loss_fct = CrossEntropyLoss() # CE loss includes the softmax function
shift_logits = shift_logits.view(-1, self.config.vocab_size) # (batch_size * (seq_len - 1), vocab_size)
shift_labels = shift_labels.view(-1) # (batch_size * seq_len)
shift_labels = shift_labels.to(shift_logits.device)
lm_loss = loss_fct(shift_logits, shift_labels)
else: # prediction_step
_, lm_loss = self.pred_with_sliced_lm_head(ada_logits, hidden_states, input_ids, labels, min_logit=-100)
# Loss from the first source
ada_logits_flat = ada_logits.view(-1, self.config.vocab_size) # (batch_size * seq_len, vocab_size)
ada_probs = torch.sigmoid(ada_logits_flat) # (batch_size * seq_len, vocab_size)
topk_gt_mask = self.topk_mask(lm_head_logits) # (batch_size, seq_len, vocab_size)
# TODO: Add weights from lm_head_logits
topk_gt_mask = topk_gt_mask.view(-1, self.config.vocab_size) # (batch_size * seq_len, vocab_size)
mask_loss_fct = BCEWithLogitsLoss() # BCE Loss including the sigmoid function
mask_loss = mask_loss_fct(ada_logits_flat, topk_gt_mask)
ada_ones = ada_probs.sum() # scalar
# TODO: Handle pad token in no-packing case
target_ones = batch_size * seq_len * self.config.ADA_TOPK # scalar
target_ones = torch.tensor(target_ones, dtype=torch.float32).to(ada_ones.device)
# We need to normalize this loss, make it agnostic to batch size, seq_len, topK
topk_loss = F.l1_loss(ada_ones, target_ones) / target_ones
loss = self.config.ADA_LOSS_WEIGHT * lm_loss + self.config.ADA_MASK_WEIGHT * mask_loss + self.config.ADA_TOPK_WEIGHT * topk_loss
else: # For generation
with torch.no_grad():
ada_logits, lm_head_logits = self.pred_with_sliced_lm_head_simple(ada_logits, hidden_states[:, -1:, :])
if not return_dict:
output = (ada_logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return AdaCausalLMOutputWithPast(
loss=loss,
logits=ada_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
# Added by AdaVocab
lm_head_logits=lm_head_logits if lm_head_logits is not None else None,
lm_loss=self.config.ADA_LOSS_WEIGHT * lm_loss if lm_loss is not None else None,
mask_loss=self.config.ADA_MASK_WEIGHT * mask_loss if mask_loss is not None else None,
topk_loss=self.config.ADA_TOPK_WEIGHT * topk_loss if topk_loss is not None else None,
)
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
# TODO: Add `get` and `set` methods for `adavocab_head`
return AdaVocabCausalLM
AdaVocabLlamaForCausalLM = create_AdaVocabCausalLM(LlamaForCausalLM)
AdaVocabGemmaforCausalLM = create_AdaVocabCausalLM(GemmaForCausalLM)
AdaVocabQwen2ForCausalLM = create_AdaVocabCausalLM(Qwen2ForCausalLM)
|