update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
- f1
|
7 |
+
model-index:
|
8 |
+
- name: wavlm-basic_s-r-5c_8batch_5sec_0.0001lr_unfrozen
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wavlm-basic_s-r-5c_8batch_5sec_0.0001lr_unfrozen
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.9859
|
20 |
+
- Accuracy: 0.75
|
21 |
+
- F1: 0.7515
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0001
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 32
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_ratio: 0.003
|
49 |
+
- num_epochs: 1000
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
55 |
+
| 2.2767 | 0.33 | 78 | 2.3002 | 0.1 | 0.0182 |
|
56 |
+
| 2.0686 | 0.66 | 156 | 2.4001 | 0.1 | 0.0182 |
|
57 |
+
| 1.7043 | 0.99 | 234 | 2.1688 | 0.19 | 0.0875 |
|
58 |
+
| 1.6238 | 1.32 | 312 | 2.0125 | 0.2533 | 0.1313 |
|
59 |
+
| 1.4339 | 1.65 | 390 | 1.7132 | 0.4433 | 0.3567 |
|
60 |
+
| 1.2106 | 1.97 | 468 | 1.6403 | 0.5233 | 0.4524 |
|
61 |
+
| 1.0918 | 2.3 | 546 | 1.6254 | 0.58 | 0.5063 |
|
62 |
+
| 0.9621 | 2.63 | 624 | 1.3746 | 0.5967 | 0.5248 |
|
63 |
+
| 0.8272 | 2.96 | 702 | 1.1466 | 0.6333 | 0.5852 |
|
64 |
+
| 0.8004 | 3.29 | 780 | 1.0567 | 0.6633 | 0.5944 |
|
65 |
+
| 0.676 | 3.62 | 858 | 0.9788 | 0.6967 | 0.6457 |
|
66 |
+
| 0.6323 | 3.95 | 936 | 0.9743 | 0.7133 | 0.6946 |
|
67 |
+
| 0.609 | 4.28 | 1014 | 1.0422 | 0.6967 | 0.6768 |
|
68 |
+
| 0.6942 | 4.61 | 1092 | 1.1858 | 0.6833 | 0.6661 |
|
69 |
+
| 0.5759 | 4.94 | 1170 | 1.1483 | 0.7233 | 0.7183 |
|
70 |
+
| 0.4296 | 5.27 | 1248 | 1.0037 | 0.73 | 0.7224 |
|
71 |
+
| 0.4322 | 5.59 | 1326 | 0.7829 | 0.8067 | 0.8046 |
|
72 |
+
| 0.4092 | 5.92 | 1404 | 0.8609 | 0.7767 | 0.7743 |
|
73 |
+
| 0.352 | 6.25 | 1482 | 1.1247 | 0.72 | 0.7128 |
|
74 |
+
| 0.2858 | 6.58 | 1560 | 0.9369 | 0.76 | 0.7500 |
|
75 |
+
| 0.2945 | 6.91 | 1638 | 1.2018 | 0.7267 | 0.7083 |
|
76 |
+
| 0.329 | 7.24 | 1716 | 0.9690 | 0.7767 | 0.7786 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.28.1
|
82 |
+
- Pytorch 2.0.0+cu118
|
83 |
+
- Datasets 2.12.0
|
84 |
+
- Tokenizers 0.13.3
|