model update
Browse files- README.md +33 -33
- analogy.bidirection.json +1 -1
- analogy.forward.json +1 -1
- analogy.reverse.json +1 -1
- classification.json +1 -1
- config.json +1 -1
- relation_mapping.json +0 -0
- tokenizer_config.json +1 -1
README.md
CHANGED
@@ -14,7 +14,7 @@ model-index:
|
|
14 |
metrics:
|
15 |
- name: Accuracy
|
16 |
type: accuracy
|
17 |
-
value: 0.
|
18 |
- task:
|
19 |
name: Analogy Questions (SAT full)
|
20 |
type: multiple-choice-qa
|
@@ -25,7 +25,7 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
-
value: 0.
|
29 |
- task:
|
30 |
name: Analogy Questions (SAT)
|
31 |
type: multiple-choice-qa
|
@@ -36,7 +36,7 @@ model-index:
|
|
36 |
metrics:
|
37 |
- name: Accuracy
|
38 |
type: accuracy
|
39 |
-
value: 0.
|
40 |
- task:
|
41 |
name: Analogy Questions (BATS)
|
42 |
type: multiple-choice-qa
|
@@ -47,7 +47,7 @@ model-index:
|
|
47 |
metrics:
|
48 |
- name: Accuracy
|
49 |
type: accuracy
|
50 |
-
value: 0.
|
51 |
- task:
|
52 |
name: Analogy Questions (Google)
|
53 |
type: multiple-choice-qa
|
@@ -58,7 +58,7 @@ model-index:
|
|
58 |
metrics:
|
59 |
- name: Accuracy
|
60 |
type: accuracy
|
61 |
-
value: 0.
|
62 |
- task:
|
63 |
name: Analogy Questions (U2)
|
64 |
type: multiple-choice-qa
|
@@ -69,7 +69,7 @@ model-index:
|
|
69 |
metrics:
|
70 |
- name: Accuracy
|
71 |
type: accuracy
|
72 |
-
value: 0.
|
73 |
- task:
|
74 |
name: Analogy Questions (U4)
|
75 |
type: multiple-choice-qa
|
@@ -80,7 +80,7 @@ model-index:
|
|
80 |
metrics:
|
81 |
- name: Accuracy
|
82 |
type: accuracy
|
83 |
-
value: 0.
|
84 |
- task:
|
85 |
name: Analogy Questions (ConceptNet Analogy)
|
86 |
type: multiple-choice-qa
|
@@ -91,7 +91,7 @@ model-index:
|
|
91 |
metrics:
|
92 |
- name: Accuracy
|
93 |
type: accuracy
|
94 |
-
value: 0.
|
95 |
- task:
|
96 |
name: Analogy Questions (TREX Analogy)
|
97 |
type: multiple-choice-qa
|
@@ -102,7 +102,7 @@ model-index:
|
|
102 |
metrics:
|
103 |
- name: Accuracy
|
104 |
type: accuracy
|
105 |
-
value: 0.
|
106 |
- task:
|
107 |
name: Lexical Relation Classification (BLESS)
|
108 |
type: classification
|
@@ -113,10 +113,10 @@ model-index:
|
|
113 |
metrics:
|
114 |
- name: F1
|
115 |
type: f1
|
116 |
-
value: 0.
|
117 |
- name: F1 (macro)
|
118 |
type: f1_macro
|
119 |
-
value: 0.
|
120 |
- task:
|
121 |
name: Lexical Relation Classification (CogALexV)
|
122 |
type: classification
|
@@ -127,10 +127,10 @@ model-index:
|
|
127 |
metrics:
|
128 |
- name: F1
|
129 |
type: f1
|
130 |
-
value: 0.
|
131 |
- name: F1 (macro)
|
132 |
type: f1_macro
|
133 |
-
value: 0.
|
134 |
- task:
|
135 |
name: Lexical Relation Classification (EVALution)
|
136 |
type: classification
|
@@ -141,10 +141,10 @@ model-index:
|
|
141 |
metrics:
|
142 |
- name: F1
|
143 |
type: f1
|
144 |
-
value: 0.
|
145 |
- name: F1 (macro)
|
146 |
type: f1_macro
|
147 |
-
value: 0.
|
148 |
- task:
|
149 |
name: Lexical Relation Classification (K&H+N)
|
150 |
type: classification
|
@@ -155,10 +155,10 @@ model-index:
|
|
155 |
metrics:
|
156 |
- name: F1
|
157 |
type: f1
|
158 |
-
value: 0.
|
159 |
- name: F1 (macro)
|
160 |
type: f1_macro
|
161 |
-
value: 0.
|
162 |
- task:
|
163 |
name: Lexical Relation Classification (ROOT09)
|
164 |
type: classification
|
@@ -169,10 +169,10 @@ model-index:
|
|
169 |
metrics:
|
170 |
- name: F1
|
171 |
type: f1
|
172 |
-
value: 0.
|
173 |
- name: F1 (macro)
|
174 |
type: f1_macro
|
175 |
-
value: 0.
|
176 |
|
177 |
---
|
178 |
# relbert/relbert-roberta-large-nce-e-semeval2012
|
@@ -180,22 +180,22 @@ model-index:
|
|
180 |
RelBERT based on [roberta-large](https://huggingface.co/roberta-large) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning).
|
181 |
This model achieves the following results on the relation understanding tasks:
|
182 |
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/analogy.forward.json)):
|
183 |
-
- Accuracy on SAT (full): 0.
|
184 |
-
- Accuracy on SAT: 0.
|
185 |
-
- Accuracy on BATS: 0.
|
186 |
-
- Accuracy on U2: 0.
|
187 |
-
- Accuracy on U4: 0.
|
188 |
-
- Accuracy on Google: 0.
|
189 |
-
- Accuracy on ConceptNet Analogy: 0.
|
190 |
-
- Accuracy on T-Rex Analogy: 0.
|
191 |
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/classification.json)):
|
192 |
-
- Micro F1 score on BLESS: 0.
|
193 |
-
- Micro F1 score on CogALexV: 0.
|
194 |
-
- Micro F1 score on EVALution: 0.
|
195 |
-
- Micro F1 score on K&H+N: 0.
|
196 |
-
- Micro F1 score on ROOT09: 0.
|
197 |
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/relation_mapping.json)):
|
198 |
-
- Accuracy on Relation Mapping: 0.
|
199 |
|
200 |
|
201 |
### Usage
|
|
|
14 |
metrics:
|
15 |
- name: Accuracy
|
16 |
type: accuracy
|
17 |
+
value: 0.9067460317460317
|
18 |
- task:
|
19 |
name: Analogy Questions (SAT full)
|
20 |
type: multiple-choice-qa
|
|
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
+
value: 0.6203208556149733
|
29 |
- task:
|
30 |
name: Analogy Questions (SAT)
|
31 |
type: multiple-choice-qa
|
|
|
36 |
metrics:
|
37 |
- name: Accuracy
|
38 |
type: accuracy
|
39 |
+
value: 0.6261127596439169
|
40 |
- task:
|
41 |
name: Analogy Questions (BATS)
|
42 |
type: multiple-choice-qa
|
|
|
47 |
metrics:
|
48 |
- name: Accuracy
|
49 |
type: accuracy
|
50 |
+
value: 0.7787659811006115
|
51 |
- task:
|
52 |
name: Analogy Questions (Google)
|
53 |
type: multiple-choice-qa
|
|
|
58 |
metrics:
|
59 |
- name: Accuracy
|
60 |
type: accuracy
|
61 |
+
value: 0.934
|
62 |
- task:
|
63 |
name: Analogy Questions (U2)
|
64 |
type: multiple-choice-qa
|
|
|
69 |
metrics:
|
70 |
- name: Accuracy
|
71 |
type: accuracy
|
72 |
+
value: 0.6403508771929824
|
73 |
- task:
|
74 |
name: Analogy Questions (U4)
|
75 |
type: multiple-choice-qa
|
|
|
80 |
metrics:
|
81 |
- name: Accuracy
|
82 |
type: accuracy
|
83 |
+
value: 0.6157407407407407
|
84 |
- task:
|
85 |
name: Analogy Questions (ConceptNet Analogy)
|
86 |
type: multiple-choice-qa
|
|
|
91 |
metrics:
|
92 |
- name: Accuracy
|
93 |
type: accuracy
|
94 |
+
value: 0.3674496644295302
|
95 |
- task:
|
96 |
name: Analogy Questions (TREX Analogy)
|
97 |
type: multiple-choice-qa
|
|
|
102 |
metrics:
|
103 |
- name: Accuracy
|
104 |
type: accuracy
|
105 |
+
value: 0.5081967213114754
|
106 |
- task:
|
107 |
name: Lexical Relation Classification (BLESS)
|
108 |
type: classification
|
|
|
113 |
metrics:
|
114 |
- name: F1
|
115 |
type: f1
|
116 |
+
value: 0.9213500075335241
|
117 |
- name: F1 (macro)
|
118 |
type: f1_macro
|
119 |
+
value: 0.9170729678018987
|
120 |
- task:
|
121 |
name: Lexical Relation Classification (CogALexV)
|
122 |
type: classification
|
|
|
127 |
metrics:
|
128 |
- name: F1
|
129 |
type: f1
|
130 |
+
value: 0.8551643192488263
|
131 |
- name: F1 (macro)
|
132 |
type: f1_macro
|
133 |
+
value: 0.6925965667442509
|
134 |
- task:
|
135 |
name: Lexical Relation Classification (EVALution)
|
136 |
type: classification
|
|
|
141 |
metrics:
|
142 |
- name: F1
|
143 |
type: f1
|
144 |
+
value: 0.6966413867822319
|
145 |
- name: F1 (macro)
|
146 |
type: f1_macro
|
147 |
+
value: 0.6791249033004563
|
148 |
- task:
|
149 |
name: Lexical Relation Classification (K&H+N)
|
150 |
type: classification
|
|
|
155 |
metrics:
|
156 |
- name: F1
|
157 |
type: f1
|
158 |
+
value: 0.9565973429783682
|
159 |
- name: F1 (macro)
|
160 |
type: f1_macro
|
161 |
+
value: 0.8699123751243014
|
162 |
- task:
|
163 |
name: Lexical Relation Classification (ROOT09)
|
164 |
type: classification
|
|
|
169 |
metrics:
|
170 |
- name: F1
|
171 |
type: f1
|
172 |
+
value: 0.8962707615167659
|
173 |
- name: F1 (macro)
|
174 |
type: f1_macro
|
175 |
+
value: 0.8935557085918555
|
176 |
|
177 |
---
|
178 |
# relbert/relbert-roberta-large-nce-e-semeval2012
|
|
|
180 |
RelBERT based on [roberta-large](https://huggingface.co/roberta-large) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning).
|
181 |
This model achieves the following results on the relation understanding tasks:
|
182 |
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/analogy.forward.json)):
|
183 |
+
- Accuracy on SAT (full): 0.6203208556149733
|
184 |
+
- Accuracy on SAT: 0.6261127596439169
|
185 |
+
- Accuracy on BATS: 0.7787659811006115
|
186 |
+
- Accuracy on U2: 0.6403508771929824
|
187 |
+
- Accuracy on U4: 0.6157407407407407
|
188 |
+
- Accuracy on Google: 0.934
|
189 |
+
- Accuracy on ConceptNet Analogy: 0.3674496644295302
|
190 |
+
- Accuracy on T-Rex Analogy: 0.5081967213114754
|
191 |
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/classification.json)):
|
192 |
+
- Micro F1 score on BLESS: 0.9213500075335241
|
193 |
+
- Micro F1 score on CogALexV: 0.8551643192488263
|
194 |
+
- Micro F1 score on EVALution: 0.6966413867822319
|
195 |
+
- Micro F1 score on K&H+N: 0.9565973429783682
|
196 |
+
- Micro F1 score on ROOT09: 0.8962707615167659
|
197 |
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/relation_mapping.json)):
|
198 |
+
- Accuracy on Relation Mapping: 0.9067460317460317
|
199 |
|
200 |
|
201 |
### Usage
|
analogy.bidirection.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"sat_full/test": 0.
|
|
|
1 |
+
{"sat_full/test": 0.660427807486631, "sat/test": 0.6646884272997032, "u2/test": 0.6885964912280702, "u4/test": 0.6620370370370371, "google/test": 0.954, "bats/test": 0.8104502501389661, "t_rex_relational_similarity/test": 0.6010928961748634, "conceptnet_relational_similarity/test": 0.4312080536912752, "sat/validation": 0.6216216216216216, "u2/validation": 0.6666666666666666, "u4/validation": 0.625, "google/validation": 0.96, "bats/validation": 0.8592964824120602, "semeval2012_relational_similarity/validation": 0.6962025316455697, "t_rex_relational_similarity/validation": 0.26814516129032256, "conceptnet_relational_similarity/validation": 0.36241007194244607}
|
analogy.forward.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"semeval2012_relational_similarity/validation": 0.
|
|
|
1 |
+
{"semeval2012_relational_similarity/validation": 0.7341772151898734, "sat_full/test": 0.6203208556149733, "sat/test": 0.6261127596439169, "u2/test": 0.6403508771929824, "u4/test": 0.6157407407407407, "google/test": 0.934, "bats/test": 0.7787659811006115, "t_rex_relational_similarity/test": 0.5081967213114754, "conceptnet_relational_similarity/test": 0.3674496644295302, "sat/validation": 0.5675675675675675, "u2/validation": 0.625, "u4/validation": 0.5833333333333334, "google/validation": 1.0, "bats/validation": 0.8241206030150754, "t_rex_relational_similarity/validation": 0.2399193548387097, "conceptnet_relational_similarity/validation": 0.3183453237410072}
|
analogy.reverse.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"sat_full/test": 0.
|
|
|
1 |
+
{"sat_full/test": 0.6550802139037433, "sat/test": 0.6646884272997032, "u2/test": 0.6754385964912281, "u4/test": 0.6527777777777778, "google/test": 0.946, "bats/test": 0.773763201778766, "t_rex_relational_similarity/test": 0.5956284153005464, "conceptnet_relational_similarity/test": 0.4186241610738255, "sat/validation": 0.5675675675675675, "u2/validation": 0.5833333333333334, "u4/validation": 0.5833333333333334, "google/validation": 0.92, "bats/validation": 0.8341708542713567, "semeval2012_relational_similarity/validation": 0.6582278481012658, "t_rex_relational_similarity/validation": 0.2661290322580645, "conceptnet_relational_similarity/validation": 0.32014388489208634}
|
classification.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.
|
|
|
1 |
+
{"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9213500075335241, "test/f1_macro": 0.9170729678018987, "test/f1_micro": 0.9213500075335241, "test/p_macro": 0.9135189518365673, "test/p_micro": 0.9213500075335241, "test/r_macro": 0.9212177387658143, "test/r_micro": 0.9213500075335241}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8551643192488263, "test/f1_macro": 0.6925965667442509, "test/f1_micro": 0.8551643192488263, "test/p_macro": 0.7200507756798393, "test/p_micro": 0.8551643192488263, "test/r_macro": 0.6710169140522311, "test/r_micro": 0.8551643192488263}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6966413867822319, "test/f1_macro": 0.6791249033004563, "test/f1_micro": 0.6966413867822319, "test/p_macro": 0.6848713891450097, "test/p_micro": 0.6966413867822319, "test/r_macro": 0.6757594597070967, "test/r_micro": 0.6966413867822319}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9565973429783682, "test/f1_macro": 0.8699123751243014, "test/f1_micro": 0.9565973429783682, "test/p_macro": 0.8913173287320396, "test/p_micro": 0.9565973429783682, "test/r_macro": 0.8531003052992858, "test/r_micro": 0.9565973429783682}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8962707615167659, "test/f1_macro": 0.8935557085918555, "test/f1_micro": 0.8962707615167659, "test/p_macro": 0.8963813848040892, "test/p_micro": 0.8962707615167659, "test/r_macro": 0.8911779807661145, "test/r_micro": 0.8962707615167659}}
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"RobertaModel"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "roberta-large",
|
3 |
"architectures": [
|
4 |
"RobertaModel"
|
5 |
],
|
relation_mapping.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
CHANGED
@@ -6,7 +6,7 @@
|
|
6 |
"errors": "replace",
|
7 |
"mask_token": "<mask>",
|
8 |
"model_max_length": 512,
|
9 |
-
"name_or_path": "
|
10 |
"pad_token": "<pad>",
|
11 |
"sep_token": "</s>",
|
12 |
"special_tokens_map_file": null,
|
|
|
6 |
"errors": "replace",
|
7 |
"mask_token": "<mask>",
|
8 |
"model_max_length": 512,
|
9 |
+
"name_or_path": "roberta-large",
|
10 |
"pad_token": "<pad>",
|
11 |
"sep_token": "</s>",
|
12 |
"special_tokens_map_file": null,
|