asahi417 commited on
Commit
b9435c2
1 Parent(s): 31efb8b

model update

Browse files
README.md CHANGED
@@ -14,7 +14,7 @@ model-index:
14
  metrics:
15
  - name: Accuracy
16
  type: accuracy
17
- value: 0.8825793650793651
18
  - task:
19
  name: Analogy Questions (SAT full)
20
  type: multiple-choice-qa
@@ -25,7 +25,7 @@ model-index:
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
- value: 0.5962566844919787
29
  - task:
30
  name: Analogy Questions (SAT)
31
  type: multiple-choice-qa
@@ -36,7 +36,7 @@ model-index:
36
  metrics:
37
  - name: Accuracy
38
  type: accuracy
39
- value: 0.6083086053412463
40
  - task:
41
  name: Analogy Questions (BATS)
42
  type: multiple-choice-qa
@@ -47,7 +47,7 @@ model-index:
47
  metrics:
48
  - name: Accuracy
49
  type: accuracy
50
- value: 0.783212896053363
51
  - task:
52
  name: Analogy Questions (Google)
53
  type: multiple-choice-qa
@@ -58,7 +58,7 @@ model-index:
58
  metrics:
59
  - name: Accuracy
60
  type: accuracy
61
- value: 0.918
62
  - task:
63
  name: Analogy Questions (U2)
64
  type: multiple-choice-qa
@@ -69,7 +69,7 @@ model-index:
69
  metrics:
70
  - name: Accuracy
71
  type: accuracy
72
- value: 0.6271929824561403
73
  - task:
74
  name: Analogy Questions (U4)
75
  type: multiple-choice-qa
@@ -80,7 +80,7 @@ model-index:
80
  metrics:
81
  - name: Accuracy
82
  type: accuracy
83
- value: 0.6180555555555556
84
  - task:
85
  name: Analogy Questions (ConceptNet Analogy)
86
  type: multiple-choice-qa
@@ -91,7 +91,7 @@ model-index:
91
  metrics:
92
  - name: Accuracy
93
  type: accuracy
94
- value: 0.3640939597315436
95
  - task:
96
  name: Analogy Questions (TREX Analogy)
97
  type: multiple-choice-qa
@@ -102,7 +102,7 @@ model-index:
102
  metrics:
103
  - name: Accuracy
104
  type: accuracy
105
- value: 0.5846994535519126
106
  - task:
107
  name: Lexical Relation Classification (BLESS)
108
  type: classification
@@ -113,10 +113,10 @@ model-index:
113
  metrics:
114
  - name: F1
115
  type: f1
116
- value: 0.9225553714027421
117
  - name: F1 (macro)
118
  type: f1_macro
119
- value: 0.9197291498009345
120
  - task:
121
  name: Lexical Relation Classification (CogALexV)
122
  type: classification
@@ -127,10 +127,10 @@ model-index:
127
  metrics:
128
  - name: F1
129
  type: f1
130
- value: 0.8448356807511737
131
  - name: F1 (macro)
132
  type: f1_macro
133
- value: 0.6748981211013405
134
  - task:
135
  name: Lexical Relation Classification (EVALution)
136
  type: classification
@@ -141,10 +141,10 @@ model-index:
141
  metrics:
142
  - name: F1
143
  type: f1
144
- value: 0.6847237269772481
145
  - name: F1 (macro)
146
  type: f1_macro
147
- value: 0.6766012034119605
148
  - task:
149
  name: Lexical Relation Classification (K&H+N)
150
  type: classification
@@ -155,10 +155,10 @@ model-index:
155
  metrics:
156
  - name: F1
157
  type: f1
158
- value: 0.9536760102942199
159
  - name: F1 (macro)
160
  type: f1_macro
161
- value: 0.8593518348956461
162
  - task:
163
  name: Lexical Relation Classification (ROOT09)
164
  type: classification
@@ -169,10 +169,10 @@ model-index:
169
  metrics:
170
  - name: F1
171
  type: f1
172
- value: 0.9072391099968662
173
  - name: F1 (macro)
174
  type: f1_macro
175
- value: 0.9056105194658931
176
 
177
  ---
178
  # relbert/relbert-roberta-large-nce-e-semeval2012
@@ -180,22 +180,22 @@ model-index:
180
  RelBERT based on [roberta-large](https://huggingface.co/roberta-large) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning).
181
  This model achieves the following results on the relation understanding tasks:
182
  - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/analogy.forward.json)):
183
- - Accuracy on SAT (full): 0.5962566844919787
184
- - Accuracy on SAT: 0.6083086053412463
185
- - Accuracy on BATS: 0.783212896053363
186
- - Accuracy on U2: 0.6271929824561403
187
- - Accuracy on U4: 0.6180555555555556
188
- - Accuracy on Google: 0.918
189
- - Accuracy on ConceptNet Analogy: 0.3640939597315436
190
- - Accuracy on T-Rex Analogy: 0.5846994535519126
191
  - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/classification.json)):
192
- - Micro F1 score on BLESS: 0.9225553714027421
193
- - Micro F1 score on CogALexV: 0.8448356807511737
194
- - Micro F1 score on EVALution: 0.6847237269772481
195
- - Micro F1 score on K&H+N: 0.9536760102942199
196
- - Micro F1 score on ROOT09: 0.9072391099968662
197
  - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/relation_mapping.json)):
198
- - Accuracy on Relation Mapping: 0.8825793650793651
199
 
200
 
201
  ### Usage
 
14
  metrics:
15
  - name: Accuracy
16
  type: accuracy
17
+ value: 0.9067460317460317
18
  - task:
19
  name: Analogy Questions (SAT full)
20
  type: multiple-choice-qa
 
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
+ value: 0.6203208556149733
29
  - task:
30
  name: Analogy Questions (SAT)
31
  type: multiple-choice-qa
 
36
  metrics:
37
  - name: Accuracy
38
  type: accuracy
39
+ value: 0.6261127596439169
40
  - task:
41
  name: Analogy Questions (BATS)
42
  type: multiple-choice-qa
 
47
  metrics:
48
  - name: Accuracy
49
  type: accuracy
50
+ value: 0.7787659811006115
51
  - task:
52
  name: Analogy Questions (Google)
53
  type: multiple-choice-qa
 
58
  metrics:
59
  - name: Accuracy
60
  type: accuracy
61
+ value: 0.934
62
  - task:
63
  name: Analogy Questions (U2)
64
  type: multiple-choice-qa
 
69
  metrics:
70
  - name: Accuracy
71
  type: accuracy
72
+ value: 0.6403508771929824
73
  - task:
74
  name: Analogy Questions (U4)
75
  type: multiple-choice-qa
 
80
  metrics:
81
  - name: Accuracy
82
  type: accuracy
83
+ value: 0.6157407407407407
84
  - task:
85
  name: Analogy Questions (ConceptNet Analogy)
86
  type: multiple-choice-qa
 
91
  metrics:
92
  - name: Accuracy
93
  type: accuracy
94
+ value: 0.3674496644295302
95
  - task:
96
  name: Analogy Questions (TREX Analogy)
97
  type: multiple-choice-qa
 
102
  metrics:
103
  - name: Accuracy
104
  type: accuracy
105
+ value: 0.5081967213114754
106
  - task:
107
  name: Lexical Relation Classification (BLESS)
108
  type: classification
 
113
  metrics:
114
  - name: F1
115
  type: f1
116
+ value: 0.9213500075335241
117
  - name: F1 (macro)
118
  type: f1_macro
119
+ value: 0.9170729678018987
120
  - task:
121
  name: Lexical Relation Classification (CogALexV)
122
  type: classification
 
127
  metrics:
128
  - name: F1
129
  type: f1
130
+ value: 0.8551643192488263
131
  - name: F1 (macro)
132
  type: f1_macro
133
+ value: 0.6925965667442509
134
  - task:
135
  name: Lexical Relation Classification (EVALution)
136
  type: classification
 
141
  metrics:
142
  - name: F1
143
  type: f1
144
+ value: 0.6966413867822319
145
  - name: F1 (macro)
146
  type: f1_macro
147
+ value: 0.6791249033004563
148
  - task:
149
  name: Lexical Relation Classification (K&H+N)
150
  type: classification
 
155
  metrics:
156
  - name: F1
157
  type: f1
158
+ value: 0.9565973429783682
159
  - name: F1 (macro)
160
  type: f1_macro
161
+ value: 0.8699123751243014
162
  - task:
163
  name: Lexical Relation Classification (ROOT09)
164
  type: classification
 
169
  metrics:
170
  - name: F1
171
  type: f1
172
+ value: 0.8962707615167659
173
  - name: F1 (macro)
174
  type: f1_macro
175
+ value: 0.8935557085918555
176
 
177
  ---
178
  # relbert/relbert-roberta-large-nce-e-semeval2012
 
180
  RelBERT based on [roberta-large](https://huggingface.co/roberta-large) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning).
181
  This model achieves the following results on the relation understanding tasks:
182
  - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/analogy.forward.json)):
183
+ - Accuracy on SAT (full): 0.6203208556149733
184
+ - Accuracy on SAT: 0.6261127596439169
185
+ - Accuracy on BATS: 0.7787659811006115
186
+ - Accuracy on U2: 0.6403508771929824
187
+ - Accuracy on U4: 0.6157407407407407
188
+ - Accuracy on Google: 0.934
189
+ - Accuracy on ConceptNet Analogy: 0.3674496644295302
190
+ - Accuracy on T-Rex Analogy: 0.5081967213114754
191
  - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/classification.json)):
192
+ - Micro F1 score on BLESS: 0.9213500075335241
193
+ - Micro F1 score on CogALexV: 0.8551643192488263
194
+ - Micro F1 score on EVALution: 0.6966413867822319
195
+ - Micro F1 score on K&H+N: 0.9565973429783682
196
+ - Micro F1 score on ROOT09: 0.8962707615167659
197
  - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/relation_mapping.json)):
198
+ - Accuracy on Relation Mapping: 0.9067460317460317
199
 
200
 
201
  ### Usage
analogy.bidirection.json CHANGED
@@ -1 +1 @@
1
- {"sat_full/test": 0.6310160427807486, "sat/test": 0.6409495548961425, "u2/test": 0.6798245614035088, "u4/test": 0.6643518518518519, "google/test": 0.934, "bats/test": 0.8004446914952752, "t_rex_relational_similarity/test": 0.6338797814207651, "conceptnet_relational_similarity/test": 0.40687919463087246, "sat/validation": 0.5405405405405406, "u2/validation": 0.5833333333333334, "u4/validation": 0.5833333333333334, "google/validation": 1.0, "bats/validation": 0.8542713567839196, "semeval2012_relational_similarity/validation": 0.7468354430379747, "t_rex_relational_similarity/validation": 0.2782258064516129, "conceptnet_relational_similarity/validation": 0.34532374100719426}
 
1
+ {"sat_full/test": 0.660427807486631, "sat/test": 0.6646884272997032, "u2/test": 0.6885964912280702, "u4/test": 0.6620370370370371, "google/test": 0.954, "bats/test": 0.8104502501389661, "t_rex_relational_similarity/test": 0.6010928961748634, "conceptnet_relational_similarity/test": 0.4312080536912752, "sat/validation": 0.6216216216216216, "u2/validation": 0.6666666666666666, "u4/validation": 0.625, "google/validation": 0.96, "bats/validation": 0.8592964824120602, "semeval2012_relational_similarity/validation": 0.6962025316455697, "t_rex_relational_similarity/validation": 0.26814516129032256, "conceptnet_relational_similarity/validation": 0.36241007194244607}
analogy.forward.json CHANGED
@@ -1 +1 @@
1
- {"semeval2012_relational_similarity/validation": 0.7468354430379747, "sat_full/test": 0.5962566844919787, "sat/test": 0.6083086053412463, "u2/test": 0.6271929824561403, "u4/test": 0.6180555555555556, "google/test": 0.918, "bats/test": 0.783212896053363, "t_rex_relational_similarity/test": 0.5846994535519126, "conceptnet_relational_similarity/test": 0.3640939597315436, "sat/validation": 0.4864864864864865, "u2/validation": 0.7083333333333334, "u4/validation": 0.6458333333333334, "google/validation": 1.0, "bats/validation": 0.8492462311557789, "t_rex_relational_similarity/validation": 0.2540322580645161, "conceptnet_relational_similarity/validation": 0.32194244604316546}
 
1
+ {"semeval2012_relational_similarity/validation": 0.7341772151898734, "sat_full/test": 0.6203208556149733, "sat/test": 0.6261127596439169, "u2/test": 0.6403508771929824, "u4/test": 0.6157407407407407, "google/test": 0.934, "bats/test": 0.7787659811006115, "t_rex_relational_similarity/test": 0.5081967213114754, "conceptnet_relational_similarity/test": 0.3674496644295302, "sat/validation": 0.5675675675675675, "u2/validation": 0.625, "u4/validation": 0.5833333333333334, "google/validation": 1.0, "bats/validation": 0.8241206030150754, "t_rex_relational_similarity/validation": 0.2399193548387097, "conceptnet_relational_similarity/validation": 0.3183453237410072}
analogy.reverse.json CHANGED
@@ -1 +1 @@
1
- {"sat_full/test": 0.6310160427807486, "sat/test": 0.6468842729970327, "u2/test": 0.6359649122807017, "u4/test": 0.6643518518518519, "google/test": 0.936, "bats/test": 0.7448582545858811, "t_rex_relational_similarity/test": 0.6120218579234973, "conceptnet_relational_similarity/test": 0.3565436241610738, "sat/validation": 0.4864864864864865, "u2/validation": 0.5833333333333334, "u4/validation": 0.4583333333333333, "google/validation": 0.98, "bats/validation": 0.8090452261306532, "semeval2012_relational_similarity/validation": 0.6582278481012658, "t_rex_relational_similarity/validation": 0.2782258064516129, "conceptnet_relational_similarity/validation": 0.29856115107913667}
 
1
+ {"sat_full/test": 0.6550802139037433, "sat/test": 0.6646884272997032, "u2/test": 0.6754385964912281, "u4/test": 0.6527777777777778, "google/test": 0.946, "bats/test": 0.773763201778766, "t_rex_relational_similarity/test": 0.5956284153005464, "conceptnet_relational_similarity/test": 0.4186241610738255, "sat/validation": 0.5675675675675675, "u2/validation": 0.5833333333333334, "u4/validation": 0.5833333333333334, "google/validation": 0.92, "bats/validation": 0.8341708542713567, "semeval2012_relational_similarity/validation": 0.6582278481012658, "t_rex_relational_similarity/validation": 0.2661290322580645, "conceptnet_relational_similarity/validation": 0.32014388489208634}
classification.json CHANGED
@@ -1 +1 @@
1
- {"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9225553714027422, "test/f1_macro": 0.9197291498009345, "test/f1_micro": 0.9225553714027421, "test/p_macro": 0.9150094905573273, "test/p_micro": 0.9225553714027422, "test/r_macro": 0.9255428117096391, "test/r_micro": 0.9225553714027422}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8448356807511737, "test/f1_macro": 0.6748981211013405, "test/f1_micro": 0.8448356807511737, "test/p_macro": 0.6910806285341508, "test/p_micro": 0.8448356807511737, "test/r_macro": 0.662819068684954, "test/r_micro": 0.8448356807511737}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6847237269772481, "test/f1_macro": 0.6766012034119605, "test/f1_micro": 0.6847237269772481, "test/p_macro": 0.6885422680797412, "test/p_micro": 0.6847237269772481, "test/r_macro": 0.6679318977886294, "test/r_micro": 0.6847237269772481}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9536760102942199, "test/f1_macro": 0.8593518348956461, "test/f1_micro": 0.9536760102942199, "test/p_macro": 0.8369706300928008, "test/p_micro": 0.9536760102942199, "test/r_macro": 0.8877934020457473, "test/r_micro": 0.9536760102942199}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9072391099968662, "test/f1_macro": 0.9056105194658931, "test/f1_micro": 0.9072391099968662, "test/p_macro": 0.9072040983082953, "test/p_micro": 0.9072391099968662, "test/r_macro": 0.9041836458174983, "test/r_micro": 0.9072391099968662}}
 
1
+ {"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9213500075335241, "test/f1_macro": 0.9170729678018987, "test/f1_micro": 0.9213500075335241, "test/p_macro": 0.9135189518365673, "test/p_micro": 0.9213500075335241, "test/r_macro": 0.9212177387658143, "test/r_micro": 0.9213500075335241}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8551643192488263, "test/f1_macro": 0.6925965667442509, "test/f1_micro": 0.8551643192488263, "test/p_macro": 0.7200507756798393, "test/p_micro": 0.8551643192488263, "test/r_macro": 0.6710169140522311, "test/r_micro": 0.8551643192488263}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6966413867822319, "test/f1_macro": 0.6791249033004563, "test/f1_micro": 0.6966413867822319, "test/p_macro": 0.6848713891450097, "test/p_micro": 0.6966413867822319, "test/r_macro": 0.6757594597070967, "test/r_micro": 0.6966413867822319}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9565973429783682, "test/f1_macro": 0.8699123751243014, "test/f1_micro": 0.9565973429783682, "test/p_macro": 0.8913173287320396, "test/p_micro": 0.9565973429783682, "test/r_macro": 0.8531003052992858, "test/r_micro": 0.9565973429783682}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8962707615167659, "test/f1_macro": 0.8935557085918555, "test/f1_micro": 0.8962707615167659, "test/p_macro": 0.8963813848040892, "test/p_micro": 0.8962707615167659, "test/r_macro": 0.8911779807661145, "test/r_micro": 0.8962707615167659}}
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "relbert_output/ckpt/nce_semeval2012/template-e/epoch_9",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "roberta-large",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
relation_mapping.json CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -6,7 +6,7 @@
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
- "name_or_path": "relbert_output/ckpt/nce_semeval2012/template-e/epoch_9",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": null,
 
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
+ "name_or_path": "roberta-large",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": null,