--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.60625 --- # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1494 - Accuracy: 0.6062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8347 | 1.0 | 10 | 1.9052 | 0.3688 | | 1.838 | 2.0 | 20 | 1.7999 | 0.375 | | 1.7193 | 3.0 | 30 | 1.6869 | 0.35 | | 1.5873 | 4.0 | 40 | 1.5855 | 0.4437 | | 1.4919 | 5.0 | 50 | 1.4977 | 0.475 | | 1.4049 | 6.0 | 60 | 1.4425 | 0.4875 | | 1.3025 | 7.0 | 70 | 1.4254 | 0.45 | | 1.238 | 8.0 | 80 | 1.3994 | 0.475 | | 1.1704 | 9.0 | 90 | 1.3109 | 0.5312 | | 1.1009 | 10.0 | 100 | 1.3309 | 0.525 | | 1.0309 | 11.0 | 110 | 1.2941 | 0.5687 | | 0.9705 | 12.0 | 120 | 1.2750 | 0.5188 | | 0.9315 | 13.0 | 130 | 1.2402 | 0.55 | | 0.8894 | 14.0 | 140 | 1.2425 | 0.5375 | | 0.8374 | 15.0 | 150 | 1.2273 | 0.525 | | 0.8 | 16.0 | 160 | 1.2454 | 0.5125 | | 0.7597 | 17.0 | 170 | 1.2445 | 0.5125 | | 0.7143 | 18.0 | 180 | 1.1750 | 0.5687 | | 0.6832 | 19.0 | 190 | 1.2456 | 0.525 | | 0.6573 | 20.0 | 200 | 1.2004 | 0.5938 | | 0.639 | 21.0 | 210 | 1.1924 | 0.5563 | | 0.635 | 22.0 | 220 | 1.1257 | 0.6 | | 0.5982 | 23.0 | 230 | 1.1845 | 0.575 | | 0.5675 | 24.0 | 240 | 1.2291 | 0.5625 | | 0.5634 | 25.0 | 250 | 1.1837 | 0.5687 | | 0.535 | 26.0 | 260 | 1.2384 | 0.5813 | | 0.5233 | 27.0 | 270 | 1.1911 | 0.5875 | | 0.529 | 28.0 | 280 | 1.2083 | 0.5875 | | 0.5141 | 29.0 | 290 | 1.1813 | 0.5875 | | 0.5166 | 30.0 | 300 | 1.1578 | 0.5938 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3