--- license: mit base_model: papluca/xlm-roberta-base-language-detection tags: - Italian - legal ruling - generated_from_trainer metrics: - f1 - accuracy model-index: - name: ribesstefano/RuleBert-v0.4-k2 results: [] --- # ribesstefano/RuleBert-v0.4-k2 This model is a fine-tuned version of [papluca/xlm-roberta-base-language-detection](https://huggingface.co/papluca/xlm-roberta-base-language-detection) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3021 - F1: 0.5409 - Roc Auc: 0.6961 - Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3653 | 0.12 | 250 | 0.3184 | 0.5103 | 0.6747 | 0.0 | | 0.3513 | 0.24 | 500 | 0.3022 | 0.5103 | 0.6747 | 0.0 | | 0.3758 | 0.36 | 750 | 0.2956 | 0.5103 | 0.6747 | 0.0 | | 0.355 | 0.48 | 1000 | 0.3073 | 0.5409 | 0.6961 | 0.0 | | 0.3499 | 0.6 | 1250 | 0.3098 | 0.5103 | 0.6747 | 0.0 | | 0.3484 | 0.72 | 1500 | 0.3009 | 0.5103 | 0.6747 | 0.0 | | 0.3394 | 0.85 | 1750 | 0.2978 | 0.5103 | 0.6747 | 0.0 | | 0.3469 | 0.97 | 2000 | 0.2975 | 0.5103 | 0.6747 | 0.0 | | 0.3522 | 1.09 | 2250 | 0.3021 | 0.5409 | 0.6961 | 0.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0