--- license: mit base_model: papluca/xlm-roberta-base-language-detection tags: - Italian - legal ruling - generated_from_trainer metrics: - f1 - accuracy model-index: - name: ribesstefano/RuleBert-v0.4-k3 results: [] --- # ribesstefano/RuleBert-v0.4-k3 This model is a fine-tuned version of [papluca/xlm-roberta-base-language-detection](https://huggingface.co/papluca/xlm-roberta-base-language-detection) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3407 - F1: 0.4872 - Roc Auc: 0.6726 - Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3575 | 0.12 | 250 | 0.3463 | 0.5176 | 0.6948 | 0.0 | | 0.347 | 0.24 | 500 | 0.3424 | 0.4507 | 0.6503 | 0.0714 | | 0.347 | 0.36 | 750 | 0.3390 | 0.4507 | 0.6503 | 0.0714 | | 0.3398 | 0.48 | 1000 | 0.3248 | 0.4872 | 0.6726 | 0.0 | | 0.3485 | 0.6 | 1250 | 0.3322 | 0.5000 | 0.6785 | 0.0 | | 0.3355 | 0.71 | 1500 | 0.3407 | 0.4872 | 0.6726 | 0.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0