--- language: ja thumbnail: https://github.com/rinnakk/japanese-gpt2/blob/master/rinna.png tags: - ja - japanese - roberta - masked-lm - nlp license: mit datasets: - cc100 - wikipedia widget: - text: "[CLS]4年に1度[MASK]は開かれる。" mask_token: "[MASK]" --- # japanese-roberta-base ![rinna-icon](./rinna.png) This repository provides a base-sized Japanese RoBERTa model. The model was trained using code from Github repository [rinnakk/japanese-pretrained-models](https://github.com/rinnakk/japanese-pretrained-models) by [rinna Co., Ltd.](https://corp.rinna.co.jp/) # How to load the model *NOTE:* Use `T5Tokenizer` to initiate the tokenizer. ~~~~ from transformers import T5Tokenizer, RobertaForMaskedLM tokenizer = T5Tokenizer.from_pretrained("rinna/japanese-roberta-base") tokenizer.do_lower_case = True # due to some bug of tokenizer config loading model = RobertaForMaskedLM.from_pretrained("rinna/japanese-roberta-base") ~~~~ # How to use the model for masked token prediction ## Note 1: Use `[CLS]` To predict a masked token, be sure to add a `[CLS]` token before the sentence for the model to correctly encode it, as it is used during the model training. ## Note 2: Use `[MASK]` after tokenization A) Directly typing `[MASK]` in an input string and B) replacing a token with `[MASK]` after tokenization will yield different token sequences, and thus different prediction results. It is more appropriate to use `[MASK]` after tokenization (as it is consistent with how the model was pretrained). However, the Huggingface Inference API only supports typing `[MASK]` in the input string and produces less robust predictions. ## Example Here is an example by to illustrate how our model works as a masked language model. Notice the difference between running the following code example and running the Huggingface Inference API. ~~~~ # original text text = "4年に1度オリンピックは開かれる。" # prepend [CLS] text = "[CLS]" + text # tokenize tokens = tokenizer.tokenize(text) print(tokens) # output: ['[CLS]', '▁4', '年に', '1', '度', 'オリンピック', 'は', '開かれる', '。'] # mask a token masked_idx = 6 tokens[masked_idx] = tokenizer.mask_token print(tokens) # output: ['[CLS]', '▁4', '年に', '1', '度', '[MASK]', 'は', '開かれる', '。'] # convert to ids token_ids = tokenizer.convert_tokens_to_ids(tokens) print(token_ids) # output: [4, 1602, 44, 24, 368, 6, 11, 21583, 8] # convert to tensor import torch token_tensor = torch.tensor([token_ids]) # get the top 10 predictions of the masked token model = model.eval() with torch.no_grad(): outputs = model(token_tensor) predictions = outputs[0][0, masked_idx].topk(10) for i, index_t in enumerate(predictions.indices): index = index_t.item() token = tokenizer.convert_ids_to_tokens([index])[0] print(i, token) """ 0 ワールドカップ 1 フェスティバル 2 オリンピック 3 サミット 4 東京オリンピック 5 総会 6 全国大会 7 イベント 8 世界選手権 9 パーティー """ ~~~~ # Model architecture A 12-layer, 768-hidden-size transformer-based masked language model. # Training The model was trained on [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz) and [Japanese Wikipedia](https://dumps.wikimedia.org/jawiki/) to optimize a masked language modelling objective on 8*V100 GPUs for around 15 days. It reaches ~3.9 perplexity on a dev set sampled from CC-100. # Tokenization The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer, the vocabulary was trained on the Japanese Wikipedia using the official sentencepiece training script. # Licenese [The MIT license](https://opensource.org/licenses/MIT)