--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - HuggingFaceH4/no_robots base_model: openchat/openchat_3.5 widget: - text: '<|system|> You are a friendly chatbot who always responds in the style of a pirate <|user|> How many helicopters can a human eat in one sitting? <|assistant|> ' output: text: Ahoy there, me hearty! As a friendly pirate chatbot, I be tellin' ye that a human cannot eat a helicopter, as it be a large machine made of metal and suchlike, not fit for human consumption. A human can eat food, like a fine feast of roasted meat and sweet fruits, but a helicopter? That be nonsense, me hearty! So, the answer be none, none at all. Arr! pipeline_tag: text-generation model-index: - name: smol-7b results: [] --- # Smol 7B This model is a fine-tuned version of [openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5) on the open source dataset [HuggingFaceH4/no_robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) using the recipes published in [The Alignment Handbook](https://github.com/huggingface/alignment-handbook). ## Model date rishiraj/smol-7b was trained between 1st and 3rd December, 2023. ## Evaluation It achieves the following results on the [Open_LLM_Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). At the time of release, smol-7b is the highest ranked 7B chat model on the [MMLU Benchmark](https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu). | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | ---------------------------- | ------- | ----- | --------- | ----- | ---------- | ---------- | ----- | | **rishiraj/smol-7b** | **67.11** | **63.74** | **84.77** | **65** | **46.17** | **80.66** | **62.32** | | argilla/notus-7b-v1 | 63.49 | 64.59 | 84.83 | 63.04 | 54.35 | 79.56 | 34.57 | | Intel/neural-chat-7b-v3-1 | 61.59 | 66.21 | 83.64 | 62.37 | 59.65 | 78.14 | 19.56 | | HuggingFaceH4/zephyr-7b-beta | 61.59 | 62.46 | 84.35 | 60.7 | 57.83 | 77.11 | 27.07 | | Qwen/Qwen-7B | 59.19 | 51.37 | 78.47 | 59.84 | 47.79 | 72.69 | 44.96 | | microsoft/Orca-2-7b | 54.55 | 54.1 | 76.19 | 56.37 | 52.45 | 73.48 | 14.71 | | 01-ai/Yi-6B | 54.08 | 55.55 | 76.57 | 64.11 | 41.96 | 74.19 | 12.13 | ## Inference procedure Here's how you can run the model using the pipeline() function from 🤗 Transformers: ``` import torch from transformers import pipeline pipe = pipeline("text-generation", model="rishiraj/smol-7b", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate" }, { "role": "user", "content": "How many helicopters can a human eat in one sitting?" } ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0569 | 0.16 | 3 | 2.0409 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1 ## Citation Information ``` @misc{rishiraj2023smol, author = {Rishiraj Acharya}, title = {Smol 7B}, year = {2023}, publisher = {Hugging Face}, journal = {Hugging Face repository}, howpublished = {\url{https://huggingface.co/rishiraj/smol-7b}} } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_rishiraj__smol-7b) | Metric |Value| |---------------------------------|----:| |Avg. |67.11| |AI2 Reasoning Challenge (25-Shot)|63.74| |HellaSwag (10-Shot) |84.77| |MMLU (5-Shot) |65.00| |TruthfulQA (0-shot) |46.17| |Winogrande (5-shot) |80.66| |GSM8k (5-shot) |62.32|