ritutweets46 commited on
Commit
e0bffe9
1 Parent(s): ca789e2

End of training

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ base_model: microsoft/layoutlmv3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - doc_lay_net-small
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: Layoutlmv3-finetuned-DocLayNet-test
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: doc_lay_net-small
21
+ type: doc_lay_net-small
22
+ config: DocLayNet_2022.08_processed_on_2023.01
23
+ split: test
24
+ args: DocLayNet_2022.08_processed_on_2023.01
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.6647646219686163
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.6763425253991292
32
+ - name: F1
33
+ type: f1
34
+ value: 0.6705035971223021
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.8582839474362278
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # Layoutlmv3-finetuned-DocLayNet-test
44
+
45
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the doc_lay_net-small dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.8293
48
+ - Precision: 0.6648
49
+ - Recall: 0.6763
50
+ - F1: 0.6705
51
+ - Accuracy: 0.8583
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 1e-05
71
+ - train_batch_size: 2
72
+ - eval_batch_size: 2
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - lr_scheduler_warmup_ratio: 0.1
77
+ - training_steps: 1000
78
+ - mixed_precision_training: Native AMP
79
+
80
+ ### Training results
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
+ | 1.5039 | 0.3660 | 250 | 1.1856 | 0.1597 | 0.2785 | 0.2030 | 0.5852 |
85
+ | 0.8176 | 0.7321 | 500 | 0.6027 | 0.4143 | 0.5506 | 0.4728 | 0.8651 |
86
+ | 0.5533 | 1.0981 | 750 | 0.6755 | 0.5946 | 0.6266 | 0.6102 | 0.8649 |
87
+ | 0.4021 | 1.4641 | 1000 | 0.6233 | 0.6017 | 0.6646 | 0.6316 | 0.8804 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.42.4
93
+ - Pytorch 2.3.1+cu121
94
+ - Datasets 2.20.0
95
+ - Tokenizers 0.19.1