ritutweets46
commited on
Commit
•
e0bffe9
1
Parent(s):
ca789e2
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
base_model: microsoft/layoutlmv3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- doc_lay_net-small
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: Layoutlmv3-finetuned-DocLayNet-test
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: doc_lay_net-small
|
21 |
+
type: doc_lay_net-small
|
22 |
+
config: DocLayNet_2022.08_processed_on_2023.01
|
23 |
+
split: test
|
24 |
+
args: DocLayNet_2022.08_processed_on_2023.01
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.6647646219686163
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.6763425253991292
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.6705035971223021
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.8582839474362278
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# Layoutlmv3-finetuned-DocLayNet-test
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the doc_lay_net-small dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.8293
|
48 |
+
- Precision: 0.6648
|
49 |
+
- Recall: 0.6763
|
50 |
+
- F1: 0.6705
|
51 |
+
- Accuracy: 0.8583
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 1e-05
|
71 |
+
- train_batch_size: 2
|
72 |
+
- eval_batch_size: 2
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- lr_scheduler_warmup_ratio: 0.1
|
77 |
+
- training_steps: 1000
|
78 |
+
- mixed_precision_training: Native AMP
|
79 |
+
|
80 |
+
### Training results
|
81 |
+
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
83 |
+
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
84 |
+
| 1.5039 | 0.3660 | 250 | 1.1856 | 0.1597 | 0.2785 | 0.2030 | 0.5852 |
|
85 |
+
| 0.8176 | 0.7321 | 500 | 0.6027 | 0.4143 | 0.5506 | 0.4728 | 0.8651 |
|
86 |
+
| 0.5533 | 1.0981 | 750 | 0.6755 | 0.5946 | 0.6266 | 0.6102 | 0.8649 |
|
87 |
+
| 0.4021 | 1.4641 | 1000 | 0.6233 | 0.6017 | 0.6646 | 0.6316 | 0.8804 |
|
88 |
+
|
89 |
+
|
90 |
+
### Framework versions
|
91 |
+
|
92 |
+
- Transformers 4.42.4
|
93 |
+
- Pytorch 2.3.1+cu121
|
94 |
+
- Datasets 2.20.0
|
95 |
+
- Tokenizers 0.19.1
|