File size: 2,012 Bytes
4fb71b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
Logging training Running DummyClassifier() accuracy: 0.894 recall_macro: 0.333 precision_macro: 0.298 f1_macro: 0.315 === new best DummyClassifier() (using recall_macro): accuracy: 0.894 recall_macro: 0.333 precision_macro: 0.298 f1_macro: 0.315 Running GaussianNB() accuracy: 0.653 recall_macro: 0.513 precision_macro: 0.392 f1_macro: 0.381 === new best GaussianNB() (using recall_macro): accuracy: 0.653 recall_macro: 0.513 precision_macro: 0.392 f1_macro: 0.381 Running MultinomialNB() accuracy: 0.893 recall_macro: 0.344 precision_macro: 0.464 f1_macro: 0.336 Running DecisionTreeClassifier(class_weight='balanced', max_depth=1) accuracy: 0.820 recall_macro: 0.428 precision_macro: 0.320 f1_macro: 0.336 Running DecisionTreeClassifier(class_weight='balanced', max_depth=5) accuracy: 0.562 recall_macro: 0.514 precision_macro: 0.384 f1_macro: 0.343 === new best DecisionTreeClassifier(class_weight='balanced', max_depth=5) (using recall_macro): accuracy: 0.562 recall_macro: 0.514 precision_macro: 0.384 f1_macro: 0.343 Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01) accuracy: 0.535 recall_macro: 0.519 precision_macro: 0.382 f1_macro: 0.334 === new best DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01) (using recall_macro): accuracy: 0.535 recall_macro: 0.519 precision_macro: 0.382 f1_macro: 0.334 Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) accuracy: 0.736 recall_macro: 0.632 precision_macro: 0.440 f1_macro: 0.458 === new best LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) (using recall_macro): accuracy: 0.736 recall_macro: 0.632 precision_macro: 0.440 f1_macro: 0.458 Running LogisticRegression(C=1, class_weight='balanced', max_iter=1000) accuracy: 0.745 recall_macro: 0.619 precision_macro: 0.441 f1_macro: 0.461 Best model: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) Best Scores: accuracy: 0.736 recall_macro: 0.632 precision_macro: 0.440 f1_macro: 0.458 |