--- base_model: mistralai/Mistral-7B-v0.1 library_name: peft tags: - generated_from_trainer model-index: - name: outputs/lora-out results: [] widget: - text: Хто тримає цей район? license: apache-2.0 datasets: - robinhad/UAlpaca2.0 language: - uk pipeline_tag: text-generation --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: true strict: false chat_template: chatml datasets: - path: /home/paniv/Projects/ualpaca2.json type: chat_template chat_template: chatml field_messages: conversations message_field_role: role message_field_content: content roles: user: - user assistant: - assistant dataset_prepared_path: last_run_prepared shuffle_merged_datasets: true val_set_size: 0.02 output_dir: ./outputs/lora-out adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: UAlpaca2 wandb_entity: wandb_watch: wandb_name: full_train wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 5 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: true group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 eval_sample_packing: false saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

[Visualize in Weights & Biases](https://wandb.ai/yurii-paniv/UAlpaca2/runs/dcxwtf2z) # outputs/lora-out This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5696 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 40 - total_eval_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3714 | 0.0091 | 1 | 2.5733 | | 1.1049 | 0.2551 | 28 | 0.6542 | | 1.0633 | 0.5103 | 56 | 0.5824 | | 1.0023 | 0.7654 | 84 | 0.5696 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1 # Attribution ## ELEKS supported this project through a grant dedicated to the memory of Oleksiy Skrypnyk.