---
base_model: mistralai/Mistral-7B-v0.1
library_name: peft
tags:
- generated_from_trainer
model-index:
- name: outputs/lora-out
results: []
widget:
- text: Хто тримає цей район?
license: apache-2.0
datasets:
- robinhad/UAlpaca2.0
language:
- uk
pipeline_tag: text-generation
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
chat_template: chatml
datasets:
- path: /home/paniv/Projects/ualpaca2.json
type: chat_template
chat_template: chatml
field_messages: conversations
message_field_role: role
message_field_content: content
roles:
user:
- user
assistant:
- assistant
dataset_prepared_path: last_run_prepared
shuffle_merged_datasets: true
val_set_size: 0.02
output_dir: ./outputs/lora-out
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: UAlpaca2
wandb_entity:
wandb_watch:
wandb_name: full_train
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 5
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: true
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
eval_sample_packing: false
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
[](https://wandb.ai/yurii-paniv/UAlpaca2/runs/dcxwtf2z)
# outputs/lora-out
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5696
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 40
- total_eval_batch_size: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.3714 | 0.0091 | 1 | 2.5733 |
| 1.1049 | 0.2551 | 28 | 0.6542 |
| 1.0633 | 0.5103 | 56 | 0.5824 |
| 1.0023 | 0.7654 | 84 | 0.5696 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
# Attribution
## ELEKS supported this project through a grant dedicated to the memory of Oleksiy Skrypnyk.