File size: 2,028 Bytes
8b1c32f 702d923 8b1c32f 702d923 8b1c32f 702d923 8b1c32f 702d923 8b1c32f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
language:
- en
license: apache-2.0
library_name: peft
tags:
- mistral
- generated_from_trainer
- Transformers
- text-generation-inference
datasets:
- robinsmits/ChatAlpaca-20K
inference: false
base_model: mistralai/Mistral-7B-Instruct-v0.2
model-index:
- name: Mistral-Instruct-7B-v0.2-ChatAlpaca
results: []
pipeline_tag: text-generation
---
# Mistral-Instruct-7B-v0.2-ChatAlpaca
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the English [robinsmits/ChatAlpaca-20K](https://www.huggingface.co/datasets/robinsmits/ChatAlpaca-20K) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8584
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.99 | 0.2 | 120 | 0.9355 |
| 0.8793 | 0.39 | 240 | 0.8848 |
| 0.8671 | 0.59 | 360 | 0.8737 |
| 0.8662 | 0.78 | 480 | 0.8679 |
| 0.8627 | 0.98 | 600 | 0.8639 |
| 0.8426 | 1.18 | 720 | 0.8615 |
| 0.8574 | 1.37 | 840 | 0.8598 |
| 0.8473 | 1.57 | 960 | 0.8589 |
| 0.8528 | 1.76 | 1080 | 0.8585 |
| 0.852 | 1.96 | 1200 | 0.8584 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0 |