File size: 7,846 Bytes
e21c9b4
6edb297
 
938e9b1
b7e48de
 
 
 
938e9b1
b7e48de
938e9b1
b7e48de
938e9b1
 
 
8acbaa9
6edb297
 
 
e21c9b4
 
b7e48de
e21c9b4
014a7af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e18c885
 
 
014a7af
 
 
1c1ad28
 
cca8d18
 
b7e48de
 
 
 
 
 
 
 
 
 
e21c9b4
b7e48de
e21c9b4
b7e48de
e21c9b4
b7e48de
 
 
 
 
 
 
 
 
 
 
e21c9b4
b7e48de
e21c9b4
b7e48de
 
 
 
 
 
 
 
 
 
 
 
e21c9b4
b7e48de
e21c9b4
b7e48de
 
 
 
fbc2ad9
 
 
 
 
 
 
 
 
 
 
6edb297
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
language:
- nl
license: cc-by-nc-4.0
library_name: peft
tags:
- trl
- dpo
- conversational
- generated_from_trainer
- qwen2
base_model: Qwen/Qwen1.5-7B-Chat
datasets:
- BramVanroy/ultra_feedback_dutch_cleaned
pipeline_tag: text-generation
inference: false
model-index:
- name: Qwen1.5-7B-Dutch-Chat-Dpo
  results: []
---

# Qwen1.5-7B-Dutch-Chat-Dpo

## Model description

This DPO aligned model is an adapter model based on [robinsmits/Qwen1.5-7B-Dutch-Chat-Sft](https://huggingface.co/robinsmits/Qwen1.5-7B-Dutch-Chat-Sft). 

DPO Finetuning was performed on the Dutch [BramVanroy/ultra_feedback_dutch_cleaned](https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch_cleaned) dataset.

See [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) for all information about the base model.


## Model usage

A basic example of how to use the finetuned model.

```
import torch
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer

device = 'cuda'
model_name = 'robinsmits/Qwen1.5-7B-Dutch-Chat-Dpo'

model = AutoPeftModelForCausalLM.from_pretrained(model_name, 
                                                 device_map = "auto", 
                                                 load_in_4bit = True,
                                                 torch_dtype = torch.bfloat16)

tokenizer = AutoTokenizer.from_pretrained(model_name)

messages = [{"role": "user", "content": "Hoi hoe gaat het ermee? Wat kun je me vertellen over appels?"}]

encoded_ids = tokenizer.apply_chat_template(messages, 
                                            add_generation_prompt = True,
                                            return_tensors = "pt")

generated_ids = model.generate(input_ids = encoded_ids.to(device), 
                               max_new_tokens = 256,
                               do_sample = True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```

Below the chat template with the generated output.

```
<|im_start|>system
Je bent een behulpzame AI assistent<|im_end|>
<|im_start|>user
Hoi hoe gaat het ermee? Wat kun je me vertellen over appels?<|im_end|>
<|im_start|>assistant
Hallo! Appels zijn zoet, knapperig en hebben een mooie smaak. Ze zijn groen met roze tinten en er zijn verschillende soorten zoals de Granny Smith, Red Delicious en Gala. Er wordt gezegd dat appels goed zijn voor je gezondheid omdat ze veel vezels en vitamines bevatten. Ook kunnen ze lekker worden gegeten zonder te bakken of te koken. Er zijn ook veel verschillende dingen die je met appels kunt doen zoals het maken van appeltaart of het drinken van appelcider.<|im_end|>
```

## Intended uses & limitations

As with all LLM's this model can also experience bias and hallucinations. Regardless of how you use this model always perform the necessary testing and validation.

The used dataset does not allow commercial usage.

## Training and evaluation data

The training notebook is available at the following link: [Qwen1_5_7B_Dutch_Chat_DPO](https://github.com/RobinSmits/Dutch-LLMs/blob/main/Qwen1_5_7B_Dutch_Chat_DPO.ipynb)

Training was performed with Google Colab PRO on a A100 - 40GB and lasted around 4 hours.

It achieves the following results on the evaluation set:
- Loss: 0.2610
- Rewards/chosen: -0.7248
- Rewards/rejected: -2.6224
- Rewards/accuracies: 0.9170
- Rewards/margins: 1.8976
- Logps/rejected: -877.8102
- Logps/chosen: -783.4282
- Logits/rejected: -0.8110
- Logits/chosen: -0.7528

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.5503        | 0.1   | 30   | 0.4684          | -0.0439        | -0.6295          | 0.8919             | 0.5856          | -837.9513      | -769.8103    | -0.9335         | -0.8894       |
| 0.4178        | 0.2   | 60   | 0.3568          | -0.3713        | -1.4769          | 0.9015             | 1.1056          | -854.9000      | -776.3594    | -0.8768         | -0.8276       |
| 0.3264        | 0.29  | 90   | 0.3143          | -0.4893        | -1.8730          | 0.9151             | 1.3837          | -862.8228      | -778.7191    | -0.8428         | -0.7929       |
| 0.2999        | 0.39  | 120  | 0.2885          | -0.6832        | -2.3118          | 0.9151             | 1.6286          | -871.5981      | -782.5971    | -0.8260         | -0.7730       |
| 0.3454        | 0.49  | 150  | 0.2749          | -0.7239        | -2.4904          | 0.9189             | 1.7664          | -875.1693      | -783.4113    | -0.8235         | -0.7678       |
| 0.3354        | 0.59  | 180  | 0.2685          | -0.6775        | -2.4859          | 0.9170             | 1.8084          | -875.0795      | -782.4824    | -0.8130         | -0.7574       |
| 0.2848        | 0.68  | 210  | 0.2652          | -0.7157        | -2.5692          | 0.9131             | 1.8535          | -876.7465      | -783.2466    | -0.8157         | -0.7586       |
| 0.3437        | 0.78  | 240  | 0.2621          | -0.7233        | -2.6091          | 0.9151             | 1.8857          | -877.5430      | -783.3994    | -0.8138         | -0.7561       |
| 0.2655        | 0.88  | 270  | 0.2611          | -0.7183        | -2.6154          | 0.9151             | 1.8971          | -877.6708      | -783.2995    | -0.8106         | -0.7524       |
| 0.3442        | 0.98  | 300  | 0.2610          | -0.7248        | -2.6224          | 0.9170             | 1.8976          | -877.8102      | -783.4282    | -0.8110         | -0.7528       |

### Framework versions

- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2

## Citation
Thanks to the creators of Qwen1.5 for there great work!
```
@article{qwen,
  title={Qwen Technical Report},
  author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu},
  journal={arXiv preprint arXiv:2309.16609},
  year={2023}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_robinsmits__Qwen1.5-7B-Dutch-Chat-Dpo)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |53.94|
|AI2 Reasoning Challenge (25-Shot)|50.77|
|HellaSwag (10-Shot)              |74.24|
|MMLU (5-Shot)                    |60.70|
|TruthfulQA (0-shot)              |42.37|
|Winogrande (5-shot)              |68.11|
|GSM8k (5-shot)                   |27.45|