robinsmits commited on
Commit
e0ffa30
1 Parent(s): bc6d654

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -168
README.md CHANGED
@@ -13,199 +13,111 @@ pipeline_tag: text-generation
13
  inference: false
14
  ---
15
 
16
- # Model Card for Model ID
17
 
18
- <!-- Provide a quick summary of what the model is/does. -->
19
 
 
20
 
 
21
 
22
- ## Model Details
23
 
24
- ### Model Description
25
 
26
- <!-- Provide a longer summary of what this model is. -->
27
 
28
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
29
 
30
- - **Developed by:** [More Information Needed]
31
- - **Funded by [optional]:** [More Information Needed]
32
- - **Shared by [optional]:** [More Information Needed]
33
- - **Model type:** [More Information Needed]
34
- - **Language(s) (NLP):** [More Information Needed]
35
- - **License:** [More Information Needed]
36
- - **Finetuned from model [optional]:** [More Information Needed]
37
 
38
- ### Model Sources [optional]
 
39
 
40
- <!-- Provide the basic links for the model. -->
 
 
41
 
42
- - **Repository:** [More Information Needed]
43
- - **Paper [optional]:** [More Information Needed]
44
- - **Demo [optional]:** [More Information Needed]
45
 
46
- ## Uses
47
 
48
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
49
 
50
- ### Direct Use
 
 
 
 
 
51
 
52
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
53
 
54
- [More Information Needed]
 
 
 
 
 
 
 
55
 
56
- ### Downstream Use [optional]
57
 
58
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
59
 
60
- [More Information Needed]
61
 
62
- ### Out-of-Scope Use
 
 
 
 
 
 
 
 
 
63
 
64
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
65
 
66
- [More Information Needed]
67
 
68
- ## Bias, Risks, and Limitations
 
 
 
 
 
 
 
 
 
 
69
 
70
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
71
 
72
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
73
 
74
- ### Recommendations
75
-
76
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
77
-
78
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
79
-
80
- ## How to Get Started with the Model
81
-
82
- Use the code below to get started with the model.
83
-
84
- [More Information Needed]
85
-
86
- ## Training Details
87
-
88
- ### Training Data
89
-
90
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
91
-
92
- [More Information Needed]
93
-
94
- ### Training Procedure
95
-
96
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
97
-
98
- #### Preprocessing [optional]
99
-
100
- [More Information Needed]
101
-
102
-
103
- #### Training Hyperparameters
104
-
105
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
106
-
107
- #### Speeds, Sizes, Times [optional]
108
-
109
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
110
-
111
- [More Information Needed]
112
-
113
- ## Evaluation
114
-
115
- <!-- This section describes the evaluation protocols and provides the results. -->
116
-
117
- ### Testing Data, Factors & Metrics
118
-
119
- #### Testing Data
120
-
121
- <!-- This should link to a Dataset Card if possible. -->
122
-
123
- [More Information Needed]
124
-
125
- #### Factors
126
-
127
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
128
-
129
- [More Information Needed]
130
-
131
- #### Metrics
132
-
133
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
134
-
135
- [More Information Needed]
136
-
137
- ### Results
138
-
139
- [More Information Needed]
140
-
141
- #### Summary
142
-
143
-
144
-
145
- ## Model Examination [optional]
146
-
147
- <!-- Relevant interpretability work for the model goes here -->
148
-
149
- [More Information Needed]
150
-
151
- ## Environmental Impact
152
-
153
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
154
-
155
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
156
-
157
- - **Hardware Type:** [More Information Needed]
158
- - **Hours used:** [More Information Needed]
159
- - **Cloud Provider:** [More Information Needed]
160
- - **Compute Region:** [More Information Needed]
161
- - **Carbon Emitted:** [More Information Needed]
162
-
163
- ## Technical Specifications [optional]
164
-
165
- ### Model Architecture and Objective
166
-
167
- [More Information Needed]
168
-
169
- ### Compute Infrastructure
170
-
171
- [More Information Needed]
172
-
173
- #### Hardware
174
-
175
- [More Information Needed]
176
-
177
- #### Software
178
-
179
- [More Information Needed]
180
-
181
- ## Citation [optional]
182
-
183
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
184
-
185
- **BibTeX:**
186
-
187
- [More Information Needed]
188
-
189
- **APA:**
190
-
191
- [More Information Needed]
192
-
193
- ## Glossary [optional]
194
-
195
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
196
-
197
- [More Information Needed]
198
-
199
- ## More Information [optional]
200
-
201
- [More Information Needed]
202
-
203
- ## Model Card Authors [optional]
204
-
205
- [More Information Needed]
206
-
207
- ## Model Card Contact
208
-
209
- [More Information Needed]
210
 
 
211
 
 
 
 
 
 
 
13
  inference: false
14
  ---
15
 
16
+ # Qwen1.5-7B-Dutch-Chat
17
 
18
+ ## Model description
19
 
20
+ This DPO aligned model is the merged version of the adapter model [robinsmits/Qwen1.5-7B-Dutch-Chat-Dpo](robinsmits/Qwen1.5-7B-Dutch-Chat-Dpo).
21
 
22
+ DPO Finetuning was performed on the Dutch [BramVanroy/ultra_feedback_dutch_cleaned](https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch_cleaned) dataset.
23
 
24
+ See [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) for all information about the base model.
25
 
 
26
 
27
+ ## Model usage
28
 
29
+ A basic example of how to use the finetuned model.
30
 
31
+ ```
32
+ import torch
33
+ from transformers import AutoTokenizer, AutoModelForCausalLM
 
 
 
 
34
 
35
+ device = 'cuda'
36
+ model_name = 'robinsmits/Qwen1.5-7B-Dutch-Chat'
37
 
38
+ model = AutoModelForCausalLM.from_pretrained(model_name,
39
+ device_map = "auto",
40
+ torch_dtype = torch.bfloat16)
41
 
42
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
 
 
43
 
44
+ messages = [{"role": "user", "content": "Hoi hoe gaat het ermee? Wat kun je me vertellen over appels?"}]
45
 
46
+ encoded_ids = tokenizer.apply_chat_template(messages,
47
+ add_generation_prompt = True,
48
+ return_tensors = "pt")
49
 
50
+ generated_ids = model.generate(input_ids = encoded_ids.to(device),
51
+ max_new_tokens = 256,
52
+ do_sample = True)
53
+ decoded = tokenizer.batch_decode(generated_ids)
54
+ print(decoded[0])
55
+ ```
56
 
57
+ Below the chat template with the generated output.
58
 
59
+ ```
60
+ <|im_start|>system
61
+ Je bent een behulpzame AI assistent<|im_end|>
62
+ <|im_start|>user
63
+ Hoi hoe gaat het ermee? Wat kun je me vertellen over appels?<|im_end|>
64
+ <|im_start|>assistant
65
+ Hallo! Appels zijn zo'n lekkere fruitsoort. Ze zijn zoet en knapperig, en je kunt ze koken, roosteren of zelfs in smoothies doen. Er zijn heel veel verschillende soorten appels, zoals de Fuji, Granny Smith en Gala. De appels die je meestal in de winkel koopt, komen van bomen die in het oosten van Noord-Amerika groeien.<|im_end|>
66
+ ```
67
 
68
+ ## Intended uses & limitations
69
 
70
+ More information needed
71
 
72
+ ## Training and evaluation data
73
 
74
+ It achieves the following results on the evaluation set:
75
+ - Loss: 0.2610
76
+ - Rewards/chosen: -0.7248
77
+ - Rewards/rejected: -2.6224
78
+ - Rewards/accuracies: 0.9170
79
+ - Rewards/margins: 1.8976
80
+ - Logps/rejected: -877.8102
81
+ - Logps/chosen: -783.4282
82
+ - Logits/rejected: -0.8110
83
+ - Logits/chosen: -0.7528
84
 
85
+ ## Training procedure
86
 
87
+ ### Training hyperparameters
88
 
89
+ The following hyperparameters were used during training:
90
+ - learning_rate: 1e-05
91
+ - train_batch_size: 1
92
+ - eval_batch_size: 2
93
+ - seed: 42
94
+ - gradient_accumulation_steps: 32
95
+ - total_train_batch_size: 32
96
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
97
+ - lr_scheduler_type: cosine
98
+ - lr_scheduler_warmup_ratio: 0.05
99
+ - num_epochs: 1
100
 
101
+ ### Training results
102
 
103
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
104
+ |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
105
+ | 0.5503 | 0.1 | 30 | 0.4684 | -0.0439 | -0.6295 | 0.8919 | 0.5856 | -837.9513 | -769.8103 | -0.9335 | -0.8894 |
106
+ | 0.4178 | 0.2 | 60 | 0.3568 | -0.3713 | -1.4769 | 0.9015 | 1.1056 | -854.9000 | -776.3594 | -0.8768 | -0.8276 |
107
+ | 0.3264 | 0.29 | 90 | 0.3143 | -0.4893 | -1.8730 | 0.9151 | 1.3837 | -862.8228 | -778.7191 | -0.8428 | -0.7929 |
108
+ | 0.2999 | 0.39 | 120 | 0.2885 | -0.6832 | -2.3118 | 0.9151 | 1.6286 | -871.5981 | -782.5971 | -0.8260 | -0.7730 |
109
+ | 0.3454 | 0.49 | 150 | 0.2749 | -0.7239 | -2.4904 | 0.9189 | 1.7664 | -875.1693 | -783.4113 | -0.8235 | -0.7678 |
110
+ | 0.3354 | 0.59 | 180 | 0.2685 | -0.6775 | -2.4859 | 0.9170 | 1.8084 | -875.0795 | -782.4824 | -0.8130 | -0.7574 |
111
+ | 0.2848 | 0.68 | 210 | 0.2652 | -0.7157 | -2.5692 | 0.9131 | 1.8535 | -876.7465 | -783.2466 | -0.8157 | -0.7586 |
112
+ | 0.3437 | 0.78 | 240 | 0.2621 | -0.7233 | -2.6091 | 0.9151 | 1.8857 | -877.5430 | -783.3994 | -0.8138 | -0.7561 |
113
+ | 0.2655 | 0.88 | 270 | 0.2611 | -0.7183 | -2.6154 | 0.9151 | 1.8971 | -877.6708 | -783.2995 | -0.8106 | -0.7524 |
114
+ | 0.3442 | 0.98 | 300 | 0.2610 | -0.7248 | -2.6224 | 0.9170 | 1.8976 | -877.8102 | -783.4282 | -0.8110 | -0.7528 |
115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
 
117
+ ### Framework versions
118
 
119
+ - PEFT 0.9.0
120
+ - Transformers 4.38.2
121
+ - Pytorch 2.2.1+cu121
122
+ - Datasets 2.17.1
123
+ - Tokenizers 0.15.2