robinsmits commited on
Commit
7bdfdf1
1 Parent(s): e9183f7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -0
README.md CHANGED
@@ -9,6 +9,7 @@ pipeline_tag: text-generation
9
  tags:
10
  - llama
11
  - alpaca
 
12
  ---
13
 
14
  # open_llama_7b_alpaca_clean_dutch_qlora
@@ -19,6 +20,34 @@ This adapter model is a fine-tuned version of [openlm-research/open_llama_7b](ht
19
 
20
  See [openlm-research/open_llama_7b](https://huggingface.co/openlm-research/open_llama_7b) for all information about the base model.
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  ## Intended uses & limitations
23
 
24
  The open_llama_7b model was primarily trained on the English language. Part of the dataset was a Wikipedia dump containing pages in 20 languages.
 
9
  tags:
10
  - llama
11
  - alpaca
12
+ - Transformers
13
  ---
14
 
15
  # open_llama_7b_alpaca_clean_dutch_qlora
 
20
 
21
  See [openlm-research/open_llama_7b](https://huggingface.co/openlm-research/open_llama_7b) for all information about the base model.
22
 
23
+ ## Model usage
24
+
25
+ A basic example of how to use the finetuned model.
26
+
27
+ ```
28
+ import torch
29
+ from peft import PeftModel, PeftConfig
30
+ from transformers import AutoModelForCausalLM, AutoTokenizer
31
+
32
+ model_name = "robinsmits/open_llama_7b_alpaca_clean_dutch_qlora"
33
+
34
+ tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast = False, add_eos_token = True)
35
+
36
+ config = PeftConfig.from_pretrained(model_name)
37
+
38
+ model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, load_in_8bit = True, device_map = "auto")
39
+ model = PeftModel.from_pretrained(model, model_name)
40
+
41
+ prompt = "### Instructie:\nWat zijn de drie belangrijkste softwareonderdelen die worden gebruikt bij webontwikkeling?\n\n### Antwoord:\n"
42
+
43
+ inputs = tokenizer(prompt, return_tensors = "pt", truncation = True).input_ids.cuda()
44
+ sample = model.generate(input_ids = inputs, max_new_tokens = 512, num_beams = 2, early_stopping = True, eos_token_id = tokenizer.eos_token_id)
45
+ output = tokenizer.decode(sample[0], skip_special_tokens = True)
46
+
47
+ print(output.split(prompt)[1])
48
+ ```
49
+ For more extensive usage and a lot of generated samples (both good and bad samples) see the following [Inference Notebook](https://github.com/RobinSmits/Dutch-LLMs/blob/main/Open_Llama_7B_Alpaca_Clean_Dutch_Inference.ipynb)
50
+
51
  ## Intended uses & limitations
52
 
53
  The open_llama_7b model was primarily trained on the English language. Part of the dataset was a Wikipedia dump containing pages in 20 languages.