File size: 1,990 Bytes
baf0eff 5eb7542 4b45c15 baf0eff 4b45c15 5eb7542 4b45c15 baf0eff 4b45c15 baf0eff 4b45c15 5eb7542 4b45c15 baf0eff 4b45c15 5eb7542 4b45c15 baf0eff 4b45c15 d5d6eb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: DAMO-NLP-MT/polylm-1.7b
tags:
- generated_from_trainer
model-index:
- name: polylm_1.7b_ft_alpaca_clean_dutch
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# polylm_1.7b_ft_alpaca_clean_dutch
This model is a fine-tuned version of [DAMO-NLP-MT/polylm-1.7b](https://huggingface.co/DAMO-NLP-MT/polylm-1.7b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8483
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 64
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.1248 | 0.16 | 128 | 2.1129 |
| 2.0512 | 0.33 | 256 | 2.0347 |
| 1.9983 | 0.49 | 384 | 1.9948 |
| 1.9557 | 0.66 | 512 | 1.9655 |
| 1.9583 | 0.82 | 640 | 1.9386 |
| 1.916 | 0.99 | 768 | 1.9177 |
| 1.8671 | 1.15 | 896 | 1.9019 |
| 1.8626 | 1.32 | 1024 | 1.8885 |
| 1.8321 | 1.48 | 1152 | 1.8762 |
| 1.8596 | 1.65 | 1280 | 1.8631 |
| 1.843 | 1.81 | 1408 | 1.8539 |
| 1.8333 | 1.98 | 1536 | 1.8483 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|