File size: 2,247 Bytes
26c4c94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
base_model: sshleifer/distilbart-cnn-12-6
tags:
- generated_from_trainer
datasets:
- dialogstudio
metrics:
- rouge
model-index:
- name: my_awesome_billsum_model
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: dialogstudio
type: dialogstudio
config: TweetSumm
split: test
args: TweetSumm
metrics:
- name: Rouge1
type: rouge
value: 0.4187
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_billsum_model
This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the dialogstudio dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9811
- Rouge1: 0.4187
- Rouge2: 0.1911
- Rougel: 0.3373
- Rougelsum: 0.338
- Gen Len: 65.1636
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 55 | 2.0591 | 0.4232 | 0.1899 | 0.3412 | 0.342 | 64.8545 |
| No log | 2.0 | 110 | 1.9802 | 0.4125 | 0.19 | 0.3329 | 0.3334 | 66.7545 |
| No log | 3.0 | 165 | 1.9671 | 0.4172 | 0.1927 | 0.3348 | 0.3357 | 65.3545 |
| No log | 4.0 | 220 | 1.9811 | 0.4187 | 0.1911 | 0.3373 | 0.338 | 65.1636 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|