--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - id_nergrit_corpus metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-base-ner-silvanus results: - task: name: Token Classification type: token-classification dataset: name: id_nergrit_corpus type: id_nergrit_corpus config: ner split: validation args: ner metrics: - name: Precision type: precision value: 0.918622848200313 - name: Recall type: recall value: 0.9280632411067193 - name: F1 type: f1 value: 0.9233189146677152 - name: Accuracy type: accuracy value: 0.9850887866850908 --- # xlm-roberta-base-ner-silvanus This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the id_nergrit_corpus dataset. It achieves the following results on the evaluation set: - Loss: 0.0635 - Precision: 0.9186 - Recall: 0.9281 - F1: 0.9233 - Accuracy: 0.9851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1607 | 1.0 | 827 | 0.0519 | 0.9094 | 0.9249 | 0.9171 | 0.9855 | | 0.0464 | 2.0 | 1654 | 0.0545 | 0.9137 | 0.9289 | 0.9212 | 0.9849 | | 0.0322 | 3.0 | 2481 | 0.0635 | 0.9186 | 0.9281 | 0.9233 | 0.9851 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1