--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-base-ner-silvanus results: [] --- # xlm-roberta-base-ner-silvanus This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1614 - Precision: 0.9454 - Recall: 0.9534 - F1: 0.9494 - Accuracy: 0.9550 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 6 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1526 | 1.0 | 6242 | 0.1463 | 0.9328 | 0.9483 | 0.9405 | 0.9526 | | 0.0957 | 2.0 | 12484 | 0.1250 | 0.9420 | 0.9514 | 0.9467 | 0.9663 | | 0.0889 | 3.0 | 18726 | 0.1614 | 0.9454 | 0.9534 | 0.9494 | 0.9550 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1