File size: 1,863 Bytes
2245c15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97b4923
 
 
 
 
 
2245c15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97b4923
 
 
2245c15
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
base_model: sshleifer/distilbart-cnn-6-6
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: plain-bart-on-presummarized-tod-wcep
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# plain-bart-on-presummarized-tod-wcep

This model is a fine-tuned version of [sshleifer/distilbart-cnn-6-6](https://huggingface.co/sshleifer/distilbart-cnn-6-6) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3043
- Rouge1: 34.5939
- Rouge2: 13.9925
- Rougel: 24.4982
- Rougelsum: 27.7893
- Gen Len: 66.2392

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.4866        | 1.0   | 510  | 2.3191          | 34.0155 | 13.6965 | 24.0706 | 27.3858   | 66.8784 |
| 2.1347        | 2.0   | 1020 | 2.2952          | 34.1203 | 13.7453 | 24.0993 | 27.4503   | 67.0735 |
| 1.9605        | 3.0   | 1530 | 2.3043          | 34.5939 | 13.9925 | 24.4982 | 27.7893   | 66.2392 |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2