update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- wer
|
6 |
+
model-index:
|
7 |
+
- name: Model_G_ALL_Wav2Vec2
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# Model_G_ALL_Wav2Vec2
|
15 |
+
|
16 |
+
This model was trained from scratch on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.7956
|
19 |
+
- Wer: 0.1972
|
20 |
+
- Cer: 0.0811
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0003
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 500
|
48 |
+
- num_epochs: 30
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
53 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
|
54 |
+
| 0.8395 | 0.67 | 400 | 0.5656 | 0.3303 | 0.1236 |
|
55 |
+
| 0.3196 | 1.34 | 800 | 0.5007 | 0.2922 | 0.1071 |
|
56 |
+
| 0.2491 | 2.01 | 1200 | 0.5008 | 0.2830 | 0.1056 |
|
57 |
+
| 0.2012 | 2.68 | 1600 | 0.5177 | 0.2689 | 0.1003 |
|
58 |
+
| 0.1882 | 3.35 | 2000 | 0.5517 | 0.2622 | 0.0986 |
|
59 |
+
| 0.1811 | 4.02 | 2400 | 0.5225 | 0.2543 | 0.0980 |
|
60 |
+
| 0.1648 | 4.69 | 2800 | 0.5504 | 0.2477 | 0.0948 |
|
61 |
+
| 0.1451 | 5.36 | 3200 | 0.5181 | 0.2346 | 0.0908 |
|
62 |
+
| 0.149 | 6.04 | 3600 | 0.5204 | 0.2375 | 0.0941 |
|
63 |
+
| 0.1328 | 6.71 | 4000 | 0.5780 | 0.2375 | 0.0920 |
|
64 |
+
| 0.1256 | 7.38 | 4400 | 0.5406 | 0.2443 | 0.0960 |
|
65 |
+
| 0.1193 | 8.05 | 4800 | 0.5489 | 0.2317 | 0.0928 |
|
66 |
+
| 0.1099 | 8.72 | 5200 | 0.5864 | 0.2363 | 0.0925 |
|
67 |
+
| 0.1125 | 9.39 | 5600 | 0.5749 | 0.2267 | 0.0902 |
|
68 |
+
| 0.1044 | 10.06 | 6000 | 0.5698 | 0.2279 | 0.0905 |
|
69 |
+
| 0.0925 | 10.73 | 6400 | 0.6051 | 0.2337 | 0.0933 |
|
70 |
+
| 0.0951 | 11.4 | 6800 | 0.6785 | 0.2286 | 0.0907 |
|
71 |
+
| 0.0926 | 12.07 | 7200 | 0.5937 | 0.2337 | 0.0919 |
|
72 |
+
| 0.0838 | 12.74 | 7600 | 0.5918 | 0.2233 | 0.0893 |
|
73 |
+
| 0.0775 | 13.41 | 8000 | 0.5642 | 0.2227 | 0.0888 |
|
74 |
+
| 0.0742 | 14.08 | 8400 | 0.5927 | 0.2249 | 0.0898 |
|
75 |
+
| 0.0687 | 14.75 | 8800 | 0.6647 | 0.2265 | 0.0900 |
|
76 |
+
| 0.0685 | 15.42 | 9200 | 0.7438 | 0.2164 | 0.0885 |
|
77 |
+
| 0.0645 | 16.09 | 9600 | 0.6351 | 0.2128 | 0.0858 |
|
78 |
+
| 0.0582 | 16.76 | 10000 | 0.6164 | 0.2169 | 0.0878 |
|
79 |
+
| 0.0604 | 17.44 | 10400 | 0.6327 | 0.2146 | 0.0867 |
|
80 |
+
| 0.0557 | 18.11 | 10800 | 0.6790 | 0.2148 | 0.0879 |
|
81 |
+
| 0.0552 | 18.78 | 11200 | 0.6859 | 0.2101 | 0.0848 |
|
82 |
+
| 0.0474 | 19.45 | 11600 | 0.6648 | 0.2071 | 0.0847 |
|
83 |
+
| 0.048 | 20.12 | 12000 | 0.7172 | 0.2136 | 0.0873 |
|
84 |
+
| 0.0475 | 20.79 | 12400 | 0.6451 | 0.2058 | 0.0845 |
|
85 |
+
| 0.041 | 21.46 | 12800 | 0.6826 | 0.2074 | 0.0839 |
|
86 |
+
| 0.0405 | 22.13 | 13200 | 0.6738 | 0.2110 | 0.0842 |
|
87 |
+
| 0.0355 | 22.8 | 13600 | 0.7020 | 0.2050 | 0.0839 |
|
88 |
+
| 0.0325 | 23.47 | 14000 | 0.7085 | 0.2117 | 0.0854 |
|
89 |
+
| 0.0308 | 24.14 | 14400 | 0.7418 | 0.2077 | 0.0854 |
|
90 |
+
| 0.0321 | 24.81 | 14800 | 0.7371 | 0.2051 | 0.0840 |
|
91 |
+
| 0.0274 | 25.48 | 15200 | 0.7611 | 0.2082 | 0.0848 |
|
92 |
+
| 0.0287 | 26.15 | 15600 | 0.7208 | 0.2021 | 0.0836 |
|
93 |
+
| 0.0253 | 26.82 | 16000 | 0.7432 | 0.2025 | 0.0831 |
|
94 |
+
| 0.0256 | 27.49 | 16400 | 0.7435 | 0.2011 | 0.0824 |
|
95 |
+
| 0.0243 | 28.16 | 16800 | 0.7543 | 0.1991 | 0.0818 |
|
96 |
+
| 0.0241 | 28.83 | 17200 | 0.7676 | 0.1986 | 0.0814 |
|
97 |
+
| 0.0204 | 29.51 | 17600 | 0.7956 | 0.1972 | 0.0811 |
|
98 |
+
|
99 |
+
|
100 |
+
### Framework versions
|
101 |
+
|
102 |
+
- Transformers 4.31.0
|
103 |
+
- Pytorch 2.0.1+cu117
|
104 |
+
- Datasets 1.18.3
|
105 |
+
- Tokenizers 0.13.3
|