File size: 1,783 Bytes
dec5df7
 
 
bb4c23d
 
dec5df7
 
 
 
 
 
 
 
 
 
 
 
bb4c23d
 
 
dec5df7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb4c23d
 
 
 
 
 
 
dec5df7
 
 
 
bb4c23d
 
dec5df7
bb4c23d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Model_G_S_P_Wav2Vec2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Model_G_S_P_Wav2Vec2

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4056
- Wer: 0.5800
- Cer: 0.2434

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 1.0772        | 4.17  | 400  | 1.8505          | 0.6597 | 0.2778 |
| 0.5563        | 8.33  | 800  | 1.9481          | 0.6481 | 0.2663 |
| 0.4008        | 12.5  | 1200 | 2.2166          | 0.6589 | 0.2767 |
| 0.285         | 16.67 | 1600 | 2.0445          | 0.6128 | 0.2535 |
| 0.2171        | 20.83 | 2000 | 2.2138          | 0.5943 | 0.2509 |
| 0.1611        | 25.0  | 2400 | 2.2532          | 0.5813 | 0.2455 |
| 0.1098        | 29.17 | 2800 | 2.4056          | 0.5800 | 0.2434 |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 1.18.3
- Tokenizers 0.13.3