File size: 2,123 Bytes
7b3e1b4 7a0097b 7b3e1b4 7a0097b 7b3e1b4 7a0097b 7b3e1b4 7a0097b 7b3e1b4 7a0097b 7b3e1b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
model-index:
- name: Model_G_Wav2Vec2_Version3
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice
type: common_voice
config: id
split: test
args: id
metrics:
- name: Wer
type: wer
value: 0.3320902479955249
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Model_G_Wav2Vec2_Version3
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4863
- Wer: 0.3321
- Cer: 0.0851
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 3.7935 | 5.97 | 400 | 0.6443 | 0.6220 | 0.1605 |
| 0.2843 | 11.94 | 800 | 0.5294 | 0.4286 | 0.1090 |
| 0.1364 | 17.91 | 1200 | 0.4766 | 0.3774 | 0.0969 |
| 0.0914 | 23.88 | 1600 | 0.4960 | 0.3408 | 0.0880 |
| 0.0662 | 29.85 | 2000 | 0.4863 | 0.3321 | 0.0851 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 1.18.3
- Tokenizers 0.13.3
|