File size: 2,123 Bytes
7b3e1b4
 
7a0097b
7b3e1b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a0097b
7b3e1b4
 
 
 
 
 
 
7a0097b
7b3e1b4
7a0097b
 
 
7b3e1b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a0097b
 
 
 
 
7b3e1b4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
model-index:
- name: Model_G_Wav2Vec2_Version3
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice
      type: common_voice
      config: id
      split: test
      args: id
    metrics:
    - name: Wer
      type: wer
      value: 0.3320902479955249
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Model_G_Wav2Vec2_Version3

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4863
- Wer: 0.3321
- Cer: 0.0851

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 3.7935        | 5.97  | 400  | 0.6443          | 0.6220 | 0.1605 |
| 0.2843        | 11.94 | 800  | 0.5294          | 0.4286 | 0.1090 |
| 0.1364        | 17.91 | 1200 | 0.4766          | 0.3774 | 0.0969 |
| 0.0914        | 23.88 | 1600 | 0.4960          | 0.3408 | 0.0880 |
| 0.0662        | 29.85 | 2000 | 0.4863          | 0.3321 | 0.0851 |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 1.18.3
- Tokenizers 0.13.3