--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: Model_G_Wav2Vec2_Version3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice config: id split: test args: id metrics: - name: Wer type: wer value: 0.3604325936975573 --- # Model_G_Wav2Vec2_Version3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4581 - Wer: 0.3604 - Cer: 0.0922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 3.8299 | 5.97 | 400 | 0.7799 | 0.6921 | 0.1952 | | 0.3573 | 11.94 | 800 | 0.4949 | 0.4799 | 0.1235 | | 0.1567 | 17.91 | 1200 | 0.4528 | 0.4228 | 0.1092 | | 0.1011 | 23.88 | 1600 | 0.4695 | 0.3877 | 0.0993 | | 0.0707 | 29.85 | 2000 | 0.4581 | 0.3604 | 0.0922 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 1.18.3 - Tokenizers 0.13.3