--- datasets: - fajrikoto/id_liputan6 language: - id base_model: - cahya/bert2bert-indonesian-summarization library_name: transformers pipeline_tag: summarization --- # Fine-Tuned BERT2BERT Summarization Model This model is fine-tuned based on the original [BERT2BERT Indonesian Summarization](https://huggingface.co/cahya/bert2bert-indonesian-summarization) model. ### Fine-Tuned Dataset: - **Dataset**: [Liputan6_ID](https://huggingface.co/datasets/fajrikoto/id_liputan6) - **Task**: Summarization This model was fine-tuned using the [Liputan6_ID](https://huggingface.co/datasets/fajrikoto/id_liputan6) dataset, which contains Indonesian news articles. The model is optimized for summarizing domain-specific texts from the Liputan6 dataset. ## Code Sample ```python from transformers import BertTokenizer, EncoderDecoderModel tokenizer = BertTokenizer.from_pretrained("rowjak/bert-indonesian-news-summarization") tokenizer.bos_token = tokenizer.cls_token tokenizer.eos_token = tokenizer.sep_token model = EncoderDecoderModel.from_pretrained("rowjak/bert-indonesian-news-summarization") # ARTICLE = "" # generate summary input_ids = tokenizer.encode(ARTICLE, return_tensors='pt') summary_ids = model.generate(input_ids, max_length=125, num_beams=2, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True, no_repeat_ngram_size=2, use_cache=True) summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(summary_text) ``` Output: ``` --- ```