--- language: - en - de - fr - it - pt - hi - es - th library_name: transformers pipeline_tag: image-text-to-text tags: - facebook - meta - pytorch - llama - llama-3 --- This repository is a pre-release checkpoint for Llama 3.2 11B Vision Instruct. It contains two versions of the model, for use with `transformers` and with the original `llama3` codebase (under the `original` directory). ## Inference with transformers Please, install the in-progress development wheel from https://huggingface.co/nltpt/transformers/tree/main. This is an example inference snippet (API subject to change): ```python import requests import torch from PIL import Image from transformers import MllamaForConditionalGeneration, AutoProcessor model_id = "nltpt/Llama-3.2-11B-Vision-Instruct" model = MllamaForConditionalGeneration.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) processor = AutoProcessor.from_pretrained(model_id) messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "Describe image in two sentences"} ] } ] text = processor.apply_chat_template(messages, add_generation_prompt=True) url = "https://llava-vl.github.io/static/images/view.jpg" raw_image = Image.open(requests.get(url, stream=True).raw) inputs = processor(text=text, images=raw_image, return_tensors="pt").to(model.device) output = model.generate(**inputs, do_sample=False, max_new_tokens=25) print(processor.decode(output[0])) ``` Output: ```text <|begin_of_text|><|start_header_id|>user<|end_header_id|> <|image|>Describe image in two sentences<|eot_id|><|start_header_id|>assistant<|end_header_id|> The image depicts a serene lake scene, featuring a long wooden dock extending into the calm water, with a dense forest of trees ``` ## Running the original checkpoints The package installed will provide three binaries: 1. example_chat_completion 2. example_text_completion 3. multimodal_example_chat_completion You can invoke them via torchrun by doing the following: ``` CHECKPOINT_DIR=~/.llama/checkpoints/Llama-3.2-11B-Vision-Instruct/ torchrun `which multimodal_example_chat_completion` "$CHECKPOINT_DIR" ``` You can study the code for the script by doing something like: ``` PACKAGE_DIR=$(pip show -f llama-models | grep Location | awk '{ print $2 }') echo "Scripts are in the directory: $PACKAGE_DIR/llama-models/scripts/" ```