File size: 1,040 Bytes
b506301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a2a4a4
 
 
 
 
 
 
 
b506301
7a2a4a4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from typing import Dict, List, Any
import torch
import numpy as np
from PIL import Image
from io import BytesIO
import base64

from facenet_pytorch import MTCNN, InceptionResnetV1

class EndpointHandler():
    def __init__(self, path=""):
        self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
        self.mtcnn = MTCNN(device=self.device)
        self.resnet = InceptionResnetV1(pretrained='vggface2', device=self.device).eval()

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        imageData = data.get("inputs").get("image")
        image = Image.open(BytesIO(base64.b64decode(imageData)))
        face_batch = self.mtcnn([image])
        face_batch = [i for i in face_batch if i is not None]
        if face_batch:
            aligned = torch.stack(face_batch)
            if self.device.type == "cuda":
                aligned = aligned.to(self.device)

            embeddings = self.resnet(aligned).detach().cpu()
            return embeddings.tolist()
        else: return None