ryota39 commited on
Commit
01e3b76
1 Parent(s): f97d7f0

Upload Phi3ForCausalLM

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./out/dpo_Phi_3b_model",
3
+ "architectures": [
4
+ "Phi3ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_phi3.Phi3Config",
9
+ "AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM"
10
+ },
11
+ "bos_token_id": 1,
12
+ "embd_pdrop": 0.0,
13
+ "eos_token_id": 32000,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 3072,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 8192,
18
+ "max_position_embeddings": 4096,
19
+ "model_type": "phi3",
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 32,
22
+ "num_key_value_heads": 32,
23
+ "original_max_position_embeddings": 4096,
24
+ "pad_token_id": 32000,
25
+ "pretraining_tp": 1,
26
+ "resid_pdrop": 0.0,
27
+ "rms_norm_eps": 1e-05,
28
+ "rope_scaling": null,
29
+ "rope_theta": 10000.0,
30
+ "sliding_window": 2048,
31
+ "tie_word_embeddings": false,
32
+ "torch_dtype": "float16",
33
+ "transformers_version": "4.40.0",
34
+ "use_cache": false,
35
+ "vocab_size": 32064
36
+ }
configuration_phi3.py ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ Phi-3 model configuration"""
17
+
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+ PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
26
+ "microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
27
+ "microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
28
+ }
29
+
30
+
31
+ class Phi3Config(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the
36
+ [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
37
+
38
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
39
+ documentation from [`PretrainedConfig`] for more information.
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32064):
43
+ Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`Phi3Model`].
45
+ hidden_size (`int`, *optional*, defaults to 3072):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 8192):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer decoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer decoder.
53
+ num_key_value_heads (`int`, *optional*):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
+ `num_attention_heads`.
61
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
62
+ Dropout probability for mlp outputs.
63
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
64
+ The dropout ratio for the embeddings.
65
+ attention_dropout (`float`, *optional*, defaults to 0.0):
66
+ The dropout ratio after computing the attention scores.
67
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
68
+ The non-linear activation function (function or string) in the decoder.
69
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
70
+ The maximum sequence length that this model might ever be used with.
71
+ original_max_position_embeddings (`int`, *optional*, defaults to 4096):
72
+ The maximum sequence length that this model was trained with. This is used to determine the size of the
73
+ original RoPE embeddings when using long scaling.
74
+ initializer_range (`float`, *optional*, defaults to 0.02):
75
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
76
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
77
+ The epsilon value used for the RMSNorm.
78
+ use_cache (`bool`, *optional*, defaults to `True`):
79
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
80
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
81
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
82
+ Whether to tie weight embeddings
83
+ rope_theta (`float`, *optional*, defaults to 10000.0):
84
+ The base period of the RoPE embeddings.
85
+ rope_scaling (`dict`, *optional*):
86
+ The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
87
+ contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
88
+ the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
89
+ divided by the number of attention heads divided by 2.
90
+ bos_token_id (`int`, *optional*, defaults to 1):
91
+ The id of the "beginning-of-sequence" token.
92
+ eos_token_id (`int`, *optional*, defaults to 32000):
93
+ The id of the "end-of-sequence" token.
94
+ pad_token_id (`int`, *optional*, defaults to 32000):
95
+ The id of the padding token.
96
+ sliding_window (`int`, *optional*):
97
+ Sliding window attention window size. If `None`, no sliding window is applied.
98
+
99
+ Example:
100
+
101
+ ```python
102
+ >>> from transformers import Phi3Model, Phi3Config
103
+
104
+ >>> # Initializing a Phi-3 style configuration
105
+ >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
106
+
107
+ >>> # Initializing a model from the configuration
108
+ >>> model = Phi3Model(configuration)
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "phi3"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=32064,
120
+ hidden_size=3072,
121
+ intermediate_size=8192,
122
+ num_hidden_layers=32,
123
+ num_attention_heads=32,
124
+ num_key_value_heads=None,
125
+ resid_pdrop=0.0,
126
+ embd_pdrop=0.0,
127
+ attention_dropout=0.0,
128
+ hidden_act="silu",
129
+ max_position_embeddings=4096,
130
+ original_max_position_embeddings=4096,
131
+ initializer_range=0.02,
132
+ rms_norm_eps=1e-5,
133
+ use_cache=True,
134
+ tie_word_embeddings=False,
135
+ rope_theta=10000.0,
136
+ rope_scaling=None,
137
+ bos_token_id=1,
138
+ eos_token_id=32000,
139
+ pad_token_id=32000,
140
+ sliding_window=None,
141
+ **kwargs,
142
+ ):
143
+ self.vocab_size = vocab_size
144
+ self.hidden_size = hidden_size
145
+ self.intermediate_size = intermediate_size
146
+ self.num_hidden_layers = num_hidden_layers
147
+ self.num_attention_heads = num_attention_heads
148
+
149
+ if num_key_value_heads is None:
150
+ num_key_value_heads = num_attention_heads
151
+
152
+ self.num_key_value_heads = num_key_value_heads
153
+ self.resid_pdrop = resid_pdrop
154
+ self.embd_pdrop = embd_pdrop
155
+ self.attention_dropout = attention_dropout
156
+ self.hidden_act = hidden_act
157
+ self.max_position_embeddings = max_position_embeddings
158
+ self.original_max_position_embeddings = original_max_position_embeddings
159
+ self.initializer_range = initializer_range
160
+ self.rms_norm_eps = rms_norm_eps
161
+ self.use_cache = use_cache
162
+ self.rope_theta = rope_theta
163
+ self.rope_scaling = rope_scaling
164
+ self._rope_scaling_validation()
165
+ self.sliding_window = sliding_window
166
+
167
+ super().__init__(
168
+ bos_token_id=bos_token_id,
169
+ eos_token_id=eos_token_id,
170
+ pad_token_id=pad_token_id,
171
+ tie_word_embeddings=tie_word_embeddings,
172
+ **kwargs,
173
+ )
174
+
175
+ def _rope_scaling_validation(self):
176
+ """
177
+ Validate the `rope_scaling` configuration.
178
+ """
179
+ if self.rope_scaling is None:
180
+ return
181
+
182
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
183
+ raise ValueError(
184
+ "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
185
+ f"got {self.rope_scaling}"
186
+ )
187
+ rope_scaling_type = self.rope_scaling.get("type", None)
188
+ rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
189
+ rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
190
+ if rope_scaling_type is None or rope_scaling_type not in ["su", "yarn"]:
191
+ raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
192
+ if not (
193
+ isinstance(rope_scaling_short_factor, list)
194
+ and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
195
+ ):
196
+ raise ValueError(
197
+ f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
198
+ )
199
+ if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
200
+ raise ValueError(
201
+ f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
202
+ )
203
+ if not (
204
+ isinstance(rope_scaling_long_factor, list)
205
+ and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
206
+ ):
207
+ raise ValueError(
208
+ f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
209
+ )
210
+ if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
211
+ raise ValueError(
212
+ f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
213
+ )
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": [
5
+ 32000,
6
+ 32007
7
+ ],
8
+ "pad_token_id": 32000,
9
+ "transformers_version": "4.40.0"
10
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebb9838d48e3b8c2cb8d1324855779a9896ba7e79ef129ed2de590b65e4c3b3e
3
+ size 4972489200
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80aab984f40209761620b578592a7bd20577014afe232598e7264dca10498a23
3
+ size 2669692488
model.safetensors.index.json ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 7642159104
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.1.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.10.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.10.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.11.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.11.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.12.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.12.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.13.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.13.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.14.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.14.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.15.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.15.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.16.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.16.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.17.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.17.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.18.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.18.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.19.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.19.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.2.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.2.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.20.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.20.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
93
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
94
+ "model.layers.21.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
95
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
96
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.21.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
98
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
99
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
100
+ "model.layers.22.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
101
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
102
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
103
+ "model.layers.22.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
104
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
105
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
106
+ "model.layers.23.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
107
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
108
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
109
+ "model.layers.23.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
110
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
111
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
112
+ "model.layers.24.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
113
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
114
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
115
+ "model.layers.24.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
116
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
117
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
118
+ "model.layers.25.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
119
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
120
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
121
+ "model.layers.25.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
122
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
123
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
124
+ "model.layers.26.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
125
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
127
+ "model.layers.26.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
128
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.27.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
131
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
132
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
133
+ "model.layers.27.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.28.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.28.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.29.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.29.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.3.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.3.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.30.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.30.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.31.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.31.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.4.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.4.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.5.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.5.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.6.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.6.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.7.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.7.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.8.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.8.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.9.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.9.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.norm.weight": "model-00002-of-00002.safetensors"
201
+ }
202
+ }
modeling_phi3.py ADDED
@@ -0,0 +1,1645 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ PyTorch Phi-3 model."""
17
+
18
+ import inspect
19
+ import math
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.cache_utils import Cache, DynamicCache
31
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
32
+ from transformers.modeling_outputs import (
33
+ BaseModelOutputWithPast,
34
+ CausalLMOutputWithPast,
35
+ SequenceClassifierOutputWithPast,
36
+ TokenClassifierOutput,
37
+ )
38
+ from transformers.modeling_utils import PreTrainedModel
39
+ from transformers.utils import (
40
+ add_code_sample_docstrings,
41
+ add_start_docstrings,
42
+ add_start_docstrings_to_model_forward,
43
+ is_flash_attn_2_available,
44
+ is_flash_attn_greater_or_equal_2_10,
45
+ logging,
46
+ replace_return_docstrings,
47
+ )
48
+ from .configuration_phi3 import Phi3Config
49
+
50
+
51
+ logger = logging.get_logger(__name__)
52
+
53
+ # Transformers scans dependencies in the modeling file, causing issues on conditional loading. The regex only ignores try/catch blocks, but not if statements
54
+ # if is_flash_attn_2_available():
55
+ _flash_supports_window_size = False
56
+ try:
57
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
58
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
59
+
60
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
61
+ except ImportError as error:
62
+ logger.warning(
63
+ f"`flash-attention` package not found, consider installing for better performance: {error}."
64
+ )
65
+ if not _flash_supports_window_size:
66
+ logger.warning(
67
+ "Current `flash-attenton` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`."
68
+ )
69
+
70
+ _CHECKPOINT_FOR_DOC = "microsoft/Phi-3-mini-4k-instruct"
71
+ _CONFIG_FOR_DOC = "Phi3Config"
72
+
73
+ PHI3_PRETRAINED_MODEL_ARCHIVE_LIST = [
74
+ "microsoft/Phi-3-mini-4k-instruct",
75
+ "microsoft/Phi-3-mini-128k-instruct",
76
+ # See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
77
+ ]
78
+
79
+
80
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
81
+ class Phi3RMSNorm(nn.Module):
82
+ def __init__(self, hidden_size, eps=1e-6):
83
+ """
84
+ Phi3RMSNorm is equivalent to T5LayerNorm
85
+ """
86
+ super().__init__()
87
+ self.weight = nn.Parameter(torch.ones(hidden_size))
88
+ self.variance_epsilon = eps
89
+
90
+ def forward(self, hidden_states):
91
+ input_dtype = hidden_states.dtype
92
+ hidden_states = hidden_states.to(torch.float32)
93
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
94
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
95
+ return self.weight * hidden_states.to(input_dtype)
96
+
97
+
98
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
99
+ def _get_unpad_data(attention_mask):
100
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
101
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
102
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
103
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
104
+ return (
105
+ indices,
106
+ cu_seqlens,
107
+ max_seqlen_in_batch,
108
+ )
109
+
110
+
111
+ # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
112
+ class Phi3RotaryEmbedding(nn.Module):
113
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
114
+ super().__init__()
115
+
116
+ self.dim = dim
117
+ self.max_position_embeddings = max_position_embeddings
118
+ self.base = base
119
+ self.register_buffer("inv_freq", None, persistent=False)
120
+
121
+ @torch.no_grad()
122
+ def forward(self, x, position_ids, seq_len=None):
123
+ # x: [bs, num_attention_heads, seq_len, head_size]
124
+ if self.inv_freq is None:
125
+ self.inv_freq = 1.0 / (
126
+ self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
127
+ )
128
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
129
+ position_ids_expanded = position_ids[:, None, :].float()
130
+ # Force float32 since bfloat16 loses precision on long contexts
131
+ # See https://github.com/huggingface/transformers/pull/29285
132
+ device_type = x.device.type
133
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
134
+ with torch.autocast(device_type=device_type, enabled=False):
135
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
136
+ emb = torch.cat((freqs, freqs), dim=-1)
137
+ cos = emb.cos()
138
+ sin = emb.sin()
139
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
140
+
141
+
142
+ class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding):
143
+ def __init__(
144
+ self,
145
+ dim,
146
+ short_factor,
147
+ long_factor,
148
+ original_max_position_embeddings=2048,
149
+ max_position_embeddings=2048,
150
+ base=10000,
151
+ device=None,
152
+ ):
153
+ super().__init__(dim, max_position_embeddings, base, device)
154
+
155
+ self.short_factor = short_factor
156
+ self.long_factor = long_factor
157
+ self.original_max_position_embeddings = original_max_position_embeddings
158
+
159
+ def _calc_scaling_factor(self, scale):
160
+ if scale <= 1.0:
161
+ return 1.0
162
+ return math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
163
+
164
+ @torch.no_grad()
165
+ def forward(self, x, position_ids, seq_len=None):
166
+ seq_len = torch.max(position_ids) + 1
167
+ if seq_len > self.original_max_position_embeddings:
168
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
169
+ else:
170
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
171
+
172
+ self.inv_freq = 1.0 / (
173
+ ext_factors
174
+ * self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
175
+ )
176
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
177
+ position_ids_expanded = position_ids[:, None, :].float()
178
+
179
+ # Force float32 since bfloat16 loses precision on long contexts
180
+ # See https://github.com/huggingface/transformers/pull/29285
181
+ device_type = x.device.type
182
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
183
+ with torch.autocast(device_type=device_type, enabled=False):
184
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
185
+ scaling_factor = self._calc_scaling_factor(
186
+ self.max_position_embeddings / self.original_max_position_embeddings
187
+ )
188
+ emb = torch.cat((freqs, freqs), dim=-1)
189
+ cos = emb.cos() * scaling_factor
190
+ sin = emb.sin() * scaling_factor
191
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
192
+
193
+
194
+ class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding):
195
+ def __init__(
196
+ self,
197
+ dim,
198
+ short_factor,
199
+ long_factor,
200
+ original_max_position_embeddings=2048,
201
+ max_position_embeddings=2048,
202
+ base=10000,
203
+ device=None,
204
+ ):
205
+ super().__init__(dim, max_position_embeddings, base, device)
206
+
207
+ self.short_factor = short_factor
208
+ self.long_factor = long_factor
209
+ self.original_max_position_embeddings = original_max_position_embeddings
210
+
211
+ def _calc_scaling_factor(self, scale):
212
+ if scale <= 1.0:
213
+ return 1.0
214
+ return 0.1 * math.log(scale) + 1.0
215
+
216
+ @torch.no_grad()
217
+ def forward(self, x, position_ids, seq_len=None):
218
+ seq_len = torch.max(position_ids) + 1
219
+ if seq_len > self.original_max_position_embeddings:
220
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
221
+ else:
222
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
223
+
224
+ self.inv_freq = 1.0 / (
225
+ ext_factors
226
+ * self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
227
+ )
228
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
229
+ position_ids_expanded = position_ids[:, None, :].float()
230
+
231
+ # Force float32 since bfloat16 loses precision on long contexts
232
+ # See https://github.com/huggingface/transformers/pull/29285
233
+ device_type = x.device.type
234
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
235
+ with torch.autocast(device_type=device_type, enabled=False):
236
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
237
+ scaling_factor = self._calc_scaling_factor(
238
+ self.max_position_embeddings / self.original_max_position_embeddings
239
+ )
240
+ emb = torch.cat((freqs, freqs), dim=-1)
241
+ cos = emb.cos() * scaling_factor
242
+ sin = emb.sin() * scaling_factor
243
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
244
+
245
+
246
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
247
+ def rotate_half(x):
248
+ """Rotates half the hidden dims of the input."""
249
+ x1 = x[..., : x.shape[-1] // 2]
250
+ x2 = x[..., x.shape[-1] // 2 :]
251
+ return torch.cat((-x2, x1), dim=-1)
252
+
253
+
254
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
255
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
256
+ """Applies Rotary Position Embedding to the query and key tensors.
257
+
258
+ Args:
259
+ q (`torch.Tensor`): The query tensor.
260
+ k (`torch.Tensor`): The key tensor.
261
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
262
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
263
+ position_ids (`torch.Tensor`, *optional*):
264
+ Deprecated and unused.
265
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
266
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
267
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
268
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
269
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
270
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
271
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
272
+ Returns:
273
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
274
+ """
275
+ cos = cos.unsqueeze(unsqueeze_dim)
276
+ sin = sin.unsqueeze(unsqueeze_dim)
277
+ q_embed = (q * cos) + (rotate_half(q) * sin)
278
+ k_embed = (k * cos) + (rotate_half(k) * sin)
279
+ return q_embed, k_embed
280
+
281
+
282
+ class Phi3MLP(nn.Module):
283
+ def __init__(self, config):
284
+ super().__init__()
285
+
286
+ self.config = config
287
+ self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
288
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
289
+
290
+ self.activation_fn = ACT2FN[config.hidden_act]
291
+
292
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
293
+ up_states = self.gate_up_proj(hidden_states)
294
+
295
+ gate, up_states = up_states.chunk(2, dim=-1)
296
+ up_states = up_states * self.activation_fn(gate)
297
+
298
+ return self.down_proj(up_states)
299
+
300
+
301
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
302
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
303
+ """
304
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
305
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
306
+ """
307
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
308
+ if n_rep == 1:
309
+ return hidden_states
310
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
311
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
312
+
313
+
314
+ class Phi3Attention(nn.Module):
315
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
316
+
317
+ def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
318
+ super().__init__()
319
+ self.config = config
320
+ self.layer_idx = layer_idx
321
+ if layer_idx is None:
322
+ logger.warning_once(
323
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
324
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
325
+ "when creating this class."
326
+ )
327
+
328
+ self.attention_dropout = config.attention_dropout
329
+ self.hidden_size = config.hidden_size
330
+ self.num_heads = config.num_attention_heads
331
+ self.head_dim = self.hidden_size // self.num_heads
332
+ self.num_key_value_heads = config.num_key_value_heads
333
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
334
+ self.max_position_embeddings = config.max_position_embeddings
335
+ self.original_max_position_embeddings = config.original_max_position_embeddings
336
+ self.rope_theta = config.rope_theta
337
+ self.rope_scaling = config.rope_scaling
338
+ self.is_causal = True
339
+
340
+ if (self.head_dim * self.num_heads) != self.hidden_size:
341
+ raise ValueError(
342
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
343
+ f" and `num_heads`: {self.num_heads})."
344
+ )
345
+
346
+ op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
347
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
348
+ self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
349
+ self._init_rope()
350
+
351
+ def _init_rope(self):
352
+ if self.rope_scaling is None:
353
+ self.rotary_emb = Phi3RotaryEmbedding(
354
+ self.head_dim,
355
+ max_position_embeddings=self.max_position_embeddings,
356
+ base=self.rope_theta,
357
+ )
358
+ else:
359
+ scaling_type = self.config.rope_scaling["type"]
360
+ short_factor = self.config.rope_scaling["short_factor"]
361
+ long_factor = self.config.rope_scaling["long_factor"]
362
+
363
+ if scaling_type == "su":
364
+ self.rotary_emb = Phi3SuScaledRotaryEmbedding(
365
+ self.head_dim,
366
+ short_factor,
367
+ long_factor,
368
+ max_position_embeddings=self.max_position_embeddings,
369
+ original_max_position_embeddings=self.original_max_position_embeddings,
370
+ base=self.rope_theta,
371
+ )
372
+ elif scaling_type == "yarn":
373
+ self.rotary_emb = Phi3YarnScaledRotaryEmbedding(
374
+ self.head_dim,
375
+ short_factor,
376
+ long_factor,
377
+ max_position_embeddings=self.max_position_embeddings,
378
+ original_max_position_embeddings=self.original_max_position_embeddings,
379
+ base=self.rope_theta,
380
+ )
381
+ else:
382
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
383
+
384
+ def forward(
385
+ self,
386
+ hidden_states: torch.Tensor,
387
+ attention_mask: Optional[torch.Tensor] = None,
388
+ position_ids: Optional[torch.LongTensor] = None,
389
+ past_key_value: Optional[Cache] = None,
390
+ output_attentions: bool = False,
391
+ use_cache: bool = False,
392
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
393
+ logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.")
394
+
395
+ bsz, q_len, _ = hidden_states.size()
396
+
397
+ qkv = self.qkv_proj(hidden_states)
398
+ query_pos = self.num_heads * self.head_dim
399
+ query_states = qkv[..., :query_pos]
400
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
401
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
402
+
403
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
404
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
405
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
406
+
407
+ kv_seq_len = key_states.shape[-2]
408
+ if past_key_value is not None:
409
+ if self.layer_idx is None:
410
+ raise ValueError(
411
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
412
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
413
+ "with a layer index."
414
+ )
415
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
416
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
417
+
418
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
419
+
420
+ if past_key_value is not None:
421
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
422
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
423
+
424
+ # repeat k/v heads if n_kv_heads < n_heads
425
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
426
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
427
+
428
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
429
+
430
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
431
+ raise ValueError(
432
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
433
+ f" {attn_weights.size()}"
434
+ )
435
+
436
+ if attention_mask is not None:
437
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
438
+ raise ValueError(
439
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
440
+ )
441
+ attn_weights = attn_weights + attention_mask
442
+
443
+ # upcast attention to fp32
444
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
445
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
446
+
447
+ attn_output = torch.matmul(attn_weights, value_states)
448
+
449
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
450
+ raise ValueError(
451
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
452
+ f" {attn_output.size()}"
453
+ )
454
+
455
+ attn_output = attn_output.transpose(1, 2).contiguous()
456
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
457
+
458
+ attn_output = self.o_proj(attn_output)
459
+
460
+ if not output_attentions:
461
+ attn_weights = None
462
+
463
+ return attn_output, attn_weights, past_key_value
464
+
465
+
466
+ class Phi3FlashAttention2(Phi3Attention):
467
+ """
468
+ Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
469
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
470
+ flash attention and deal with padding tokens in case the input contains any of them.
471
+ """
472
+
473
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
474
+ def __init__(self, *args, **kwargs):
475
+ super().__init__(*args, **kwargs)
476
+
477
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
478
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
479
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
480
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
481
+
482
+ def forward(
483
+ self,
484
+ hidden_states: torch.Tensor,
485
+ attention_mask: Optional[torch.LongTensor] = None,
486
+ position_ids: Optional[torch.LongTensor] = None,
487
+ past_key_value: Optional[Cache] = None,
488
+ output_attentions: bool = False,
489
+ use_cache: bool = False,
490
+ **kwargs,
491
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
492
+ # Phi3FlashAttention2 attention does not support output_attentions
493
+
494
+ if not _flash_supports_window_size:
495
+ logger.warning_once(
496
+ "The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
497
+ )
498
+ raise ValueError("The current flash attention version does not support sliding window attention.")
499
+
500
+ output_attentions = False
501
+
502
+ if "padding_mask" in kwargs:
503
+ warnings.warn(
504
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
505
+ )
506
+
507
+ # overwrite attention_mask with padding_mask
508
+ attention_mask = kwargs.pop("padding_mask")
509
+
510
+ bsz, q_len, _ = hidden_states.size()
511
+
512
+ qkv = self.qkv_proj(hidden_states)
513
+ query_pos = self.num_heads * self.head_dim
514
+ query_states = qkv[..., :query_pos]
515
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
516
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
517
+
518
+ # Flash attention requires the input to have the shape
519
+ # batch_size x seq_length x head_dim x hidden_dim
520
+ # therefore we just need to keep the original shape
521
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
522
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
523
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
524
+
525
+ kv_seq_len = key_states.shape[-2]
526
+ if past_key_value is not None:
527
+ if self.layer_idx is None:
528
+ raise ValueError(
529
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
530
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
531
+ "with a layer index."
532
+ )
533
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
534
+
535
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
536
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
537
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
538
+
539
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
540
+
541
+ use_sliding_windows = (
542
+ _flash_supports_window_size
543
+ and getattr(self.config, "sliding_window", None) is not None
544
+ and kv_seq_len > self.config.sliding_window
545
+ )
546
+
547
+ if past_key_value is not None:
548
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
549
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
550
+ if (
551
+ getattr(self.config, "sliding_window", None) is not None
552
+ and kv_seq_len > self.config.sliding_window
553
+ and cache_has_contents
554
+ ):
555
+ slicing_tokens = 1 - self.config.sliding_window
556
+
557
+ past_key = past_key_value[self.layer_idx][0]
558
+ past_value = past_key_value[self.layer_idx][1]
559
+
560
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
561
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
562
+
563
+ if past_key.shape[-2] != self.config.sliding_window - 1:
564
+ raise ValueError(
565
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
566
+ f" {past_key.shape}"
567
+ )
568
+
569
+ if attention_mask is not None:
570
+ attention_mask = attention_mask[:, slicing_tokens:]
571
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
572
+
573
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
574
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
575
+
576
+ # repeat k/v heads if n_kv_heads < n_heads
577
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
578
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
579
+
580
+ attn_dropout = self.attention_dropout if self.training else 0.0
581
+
582
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
583
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
584
+ # cast them back in the correct dtype just to be sure everything works as expected.
585
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
586
+ # in fp32.
587
+
588
+ if query_states.dtype == torch.float32:
589
+ if torch.is_autocast_enabled():
590
+ target_dtype = torch.get_autocast_gpu_dtype()
591
+ # Handle the case where the model is quantized
592
+ elif hasattr(self.config, "_pre_quantization_dtype"):
593
+ target_dtype = self.config._pre_quantization_dtype
594
+ else:
595
+ target_dtype = self.qkv_proj.weight.dtype
596
+
597
+ logger.warning_once(
598
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
599
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
600
+ f" {target_dtype}."
601
+ )
602
+
603
+ query_states = query_states.to(target_dtype)
604
+ key_states = key_states.to(target_dtype)
605
+ value_states = value_states.to(target_dtype)
606
+
607
+ # Reashape to the expected shape for Flash Attention
608
+ query_states = query_states.transpose(1, 2)
609
+ key_states = key_states.transpose(1, 2)
610
+ value_states = value_states.transpose(1, 2)
611
+
612
+ attn_output = self._flash_attention_forward(
613
+ query_states,
614
+ key_states,
615
+ value_states,
616
+ attention_mask,
617
+ q_len,
618
+ dropout=attn_dropout,
619
+ use_sliding_windows=use_sliding_windows,
620
+ )
621
+
622
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
623
+ attn_output = self.o_proj(attn_output)
624
+
625
+ if not output_attentions:
626
+ attn_weights = None
627
+
628
+ return attn_output, attn_weights, past_key_value
629
+
630
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
631
+ def _flash_attention_forward(
632
+ self,
633
+ query_states,
634
+ key_states,
635
+ value_states,
636
+ attention_mask,
637
+ query_length,
638
+ dropout=0.0,
639
+ softmax_scale=None,
640
+ use_sliding_windows=False,
641
+ ):
642
+ """
643
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
644
+ first unpad the input, then computes the attention scores and pad the final attention scores.
645
+
646
+ Args:
647
+ query_states (`torch.Tensor`):
648
+ Input query states to be passed to Flash Attention API
649
+ key_states (`torch.Tensor`):
650
+ Input key states to be passed to Flash Attention API
651
+ value_states (`torch.Tensor`):
652
+ Input value states to be passed to Flash Attention API
653
+ attention_mask (`torch.Tensor`):
654
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
655
+ position of padding tokens and 1 for the position of non-padding tokens.
656
+ dropout (`float`):
657
+ Attention dropout
658
+ softmax_scale (`float`, *optional*):
659
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
660
+ use_sliding_windows (`bool`, *optional*):
661
+ Whether to activate sliding window attention.
662
+ """
663
+ if not self._flash_attn_uses_top_left_mask:
664
+ causal = self.is_causal
665
+ else:
666
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
667
+ causal = self.is_causal and query_length != 1
668
+
669
+ # Contains at least one padding token in the sequence
670
+ if attention_mask is not None:
671
+ batch_size = query_states.shape[0]
672
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
673
+ query_states, key_states, value_states, attention_mask, query_length
674
+ )
675
+
676
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
677
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
678
+
679
+ if not use_sliding_windows:
680
+ attn_output_unpad = flash_attn_varlen_func(
681
+ query_states,
682
+ key_states,
683
+ value_states,
684
+ cu_seqlens_q=cu_seqlens_q,
685
+ cu_seqlens_k=cu_seqlens_k,
686
+ max_seqlen_q=max_seqlen_in_batch_q,
687
+ max_seqlen_k=max_seqlen_in_batch_k,
688
+ dropout_p=dropout,
689
+ softmax_scale=softmax_scale,
690
+ causal=causal,
691
+ )
692
+ else:
693
+ attn_output_unpad = flash_attn_varlen_func(
694
+ query_states,
695
+ key_states,
696
+ value_states,
697
+ cu_seqlens_q=cu_seqlens_q,
698
+ cu_seqlens_k=cu_seqlens_k,
699
+ max_seqlen_q=max_seqlen_in_batch_q,
700
+ max_seqlen_k=max_seqlen_in_batch_k,
701
+ dropout_p=dropout,
702
+ softmax_scale=softmax_scale,
703
+ causal=causal,
704
+ window_size=(self.config.sliding_window, self.config.sliding_window),
705
+ )
706
+
707
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
708
+ else:
709
+ if not use_sliding_windows:
710
+ attn_output = flash_attn_func(
711
+ query_states,
712
+ key_states,
713
+ value_states,
714
+ dropout,
715
+ softmax_scale=softmax_scale,
716
+ causal=causal,
717
+ )
718
+ else:
719
+ attn_output = flash_attn_func(
720
+ query_states,
721
+ key_states,
722
+ value_states,
723
+ dropout,
724
+ softmax_scale=softmax_scale,
725
+ causal=causal,
726
+ window_size=(self.config.sliding_window, self.config.sliding_window),
727
+ )
728
+
729
+ return attn_output
730
+
731
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
732
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
733
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
734
+
735
+ # On the first iteration we need to properly re-create the padding mask
736
+ # by slicing it on the proper place
737
+ if kv_seq_len != attention_mask.shape[-1]:
738
+ attention_mask_num_tokens = attention_mask.shape[-1]
739
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
740
+
741
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
742
+
743
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
744
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
745
+
746
+ if query_length == kv_seq_len:
747
+ query_layer = index_first_axis(
748
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
749
+ )
750
+ cu_seqlens_q = cu_seqlens_k
751
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
752
+ indices_q = indices_k
753
+ elif query_length == 1:
754
+ max_seqlen_in_batch_q = 1
755
+ cu_seqlens_q = torch.arange(
756
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
757
+ ) # There is a memcpy here, that is very bad.
758
+ indices_q = cu_seqlens_q[:-1]
759
+ query_layer = query_layer.squeeze(1)
760
+ else:
761
+ # The -q_len: slice assumes left padding.
762
+ attention_mask = attention_mask[:, -query_length:]
763
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
764
+
765
+ return (
766
+ query_layer,
767
+ key_layer,
768
+ value_layer,
769
+ indices_q,
770
+ (cu_seqlens_q, cu_seqlens_k),
771
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
772
+ )
773
+
774
+
775
+ # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
776
+ # TODO @Arthur no longer copied from LLama after static cache
777
+ class Phi3SdpaAttention(Phi3Attention):
778
+ """
779
+ Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
780
+ `Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
781
+ SDPA API.
782
+ """
783
+
784
+ # Adapted from Phi3Attention.forward
785
+ def forward(
786
+ self,
787
+ hidden_states: torch.Tensor,
788
+ attention_mask: Optional[torch.Tensor] = None,
789
+ position_ids: Optional[torch.LongTensor] = None,
790
+ past_key_value: Optional[Cache] = None,
791
+ output_attentions: bool = False,
792
+ use_cache: bool = False,
793
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
794
+ if output_attentions:
795
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
796
+ logger.warning_once(
797
+ "Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
798
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
799
+ )
800
+ return super().forward(
801
+ hidden_states=hidden_states,
802
+ attention_mask=attention_mask,
803
+ position_ids=position_ids,
804
+ past_key_value=past_key_value,
805
+ output_attentions=output_attentions,
806
+ use_cache=use_cache,
807
+ )
808
+
809
+ bsz, q_len, _ = hidden_states.size()
810
+
811
+ qkv = self.qkv_proj(hidden_states)
812
+ query_pos = self.num_heads * self.head_dim
813
+ query_states = qkv[..., :query_pos]
814
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
815
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
816
+
817
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
818
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
819
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
820
+
821
+ kv_seq_len = key_states.shape[-2]
822
+ if past_key_value is not None:
823
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
824
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
825
+
826
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
827
+
828
+ if past_key_value is not None:
829
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
830
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
831
+
832
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
833
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
834
+
835
+ if attention_mask is not None:
836
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
837
+ raise ValueError(
838
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
839
+ )
840
+
841
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
842
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
843
+ if query_states.device.type == "cuda" and attention_mask is not None:
844
+ query_states = query_states.contiguous()
845
+ key_states = key_states.contiguous()
846
+ value_states = value_states.contiguous()
847
+
848
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
849
+ query_states,
850
+ key_states,
851
+ value_states,
852
+ attn_mask=attention_mask,
853
+ dropout_p=self.attention_dropout if self.training else 0.0,
854
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
855
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
856
+ )
857
+
858
+ attn_output = attn_output.transpose(1, 2).contiguous()
859
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
860
+
861
+ attn_output = self.o_proj(attn_output)
862
+
863
+ return attn_output, None, past_key_value
864
+
865
+
866
+ PHI3_ATTENTION_CLASSES = {
867
+ "eager": Phi3Attention,
868
+ "flash_attention_2": Phi3FlashAttention2,
869
+ "sdpa": Phi3SdpaAttention,
870
+ }
871
+
872
+
873
+ class Phi3DecoderLayer(nn.Module):
874
+ def __init__(self, config: Phi3Config, layer_idx: int):
875
+ super().__init__()
876
+
877
+ self.config = config
878
+ self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
879
+
880
+ self.mlp = Phi3MLP(config)
881
+ self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
882
+
883
+ self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
884
+ self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
885
+ self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
886
+
887
+ def forward(
888
+ self,
889
+ hidden_states: torch.Tensor,
890
+ attention_mask: Optional[torch.Tensor] = None,
891
+ position_ids: Optional[torch.LongTensor] = None,
892
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
893
+ output_attentions: Optional[bool] = False,
894
+ use_cache: Optional[bool] = False,
895
+ **kwargs,
896
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
897
+ if "padding_mask" in kwargs:
898
+ warnings.warn(
899
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
900
+ )
901
+ """
902
+ Args:
903
+ hidden_states (`torch.FloatTensor`):
904
+ input to the layer of shape `(batch, seq_len, embed_dim)`
905
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
906
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
907
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
908
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
909
+ `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
910
+ output_attentions (`bool`, *optional*):
911
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
912
+ returned tensors for more detail.
913
+ use_cache (`bool`, *optional*):
914
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
915
+ (see `past_key_values`).
916
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
917
+ """
918
+
919
+ residual = hidden_states
920
+
921
+ hidden_states = self.input_layernorm(hidden_states)
922
+
923
+ # Self Attention
924
+ attn_outputs, self_attn_weights, present_key_value = self.self_attn(
925
+ hidden_states=hidden_states,
926
+ attention_mask=attention_mask,
927
+ position_ids=position_ids,
928
+ past_key_value=past_key_value,
929
+ output_attentions=output_attentions,
930
+ use_cache=use_cache,
931
+ )
932
+
933
+ hidden_states = residual + self.resid_attn_dropout(attn_outputs)
934
+
935
+ residual = hidden_states
936
+ hidden_states = self.post_attention_layernorm(hidden_states)
937
+ hidden_states = self.mlp(hidden_states)
938
+ hidden_states = residual + self.resid_mlp_dropout(hidden_states)
939
+
940
+ outputs = (hidden_states,)
941
+
942
+ if output_attentions:
943
+ outputs += (self_attn_weights,)
944
+
945
+ if use_cache:
946
+ outputs += (present_key_value,)
947
+
948
+ return outputs
949
+
950
+
951
+ PHI3_START_DOCSTRING = r"""
952
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
953
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
954
+ etc.)
955
+
956
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
957
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
958
+ and behavior.
959
+
960
+ Parameters:
961
+ config ([`Phi3Config`]):
962
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
963
+ load the weights associated with the model, only the configuration. Check out the
964
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
965
+ """
966
+
967
+
968
+ @add_start_docstrings(
969
+ "The bare Phi-3 model outputting raw hidden-states without any specific head on top.",
970
+ PHI3_START_DOCSTRING,
971
+ )
972
+ class Phi3PreTrainedModel(PreTrainedModel):
973
+ config_class = Phi3Config
974
+ base_model_prefix = "model"
975
+ supports_gradient_checkpointing = True
976
+ _no_split_modules = ["Phi3DecoderLayer"]
977
+ _skip_keys_device_placement = "past_key_values"
978
+ _supports_flash_attn_2 = True
979
+ _supports_sdpa = False
980
+ _supports_cache_class = True
981
+
982
+ _version = "0.0.5"
983
+
984
+ def _init_weights(self, module):
985
+ std = self.config.initializer_range
986
+ if isinstance(module, nn.Linear):
987
+ module.weight.data.normal_(mean=0.0, std=std)
988
+ if module.bias is not None:
989
+ module.bias.data.zero_()
990
+ elif isinstance(module, nn.Embedding):
991
+ module.weight.data.normal_(mean=0.0, std=std)
992
+ if module.padding_idx is not None:
993
+ module.weight.data[module.padding_idx].zero_()
994
+
995
+
996
+ PHI3_INPUTS_DOCSTRING = r"""
997
+ Args:
998
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
999
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1000
+ it.
1001
+
1002
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1003
+ [`PreTrainedTokenizer.__call__`] for details.
1004
+
1005
+ [What are input IDs?](../glossary#input-ids)
1006
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1007
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1008
+
1009
+ - 1 for tokens that are **not masked**,
1010
+ - 0 for tokens that are **masked**.
1011
+
1012
+ [What are attention masks?](../glossary#attention-mask)
1013
+
1014
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1015
+ [`PreTrainedTokenizer.__call__`] for details.
1016
+
1017
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1018
+ `past_key_values`).
1019
+
1020
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1021
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1022
+ information on the default strategy.
1023
+
1024
+ - 1 indicates the head is **not masked**,
1025
+ - 0 indicates the head is **masked**.
1026
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1027
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1028
+ config.n_positions - 1]`.
1029
+
1030
+ [What are position IDs?](../glossary#position-ids)
1031
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1032
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1033
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1034
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1035
+
1036
+ Two formats are allowed:
1037
+ - a [`~cache_utils.Cache`] instance;
1038
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1039
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1040
+ cache format.
1041
+
1042
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1043
+ legacy cache format will be returned.
1044
+
1045
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1046
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1047
+ of shape `(batch_size, sequence_length)`.
1048
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1049
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1050
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1051
+ model's internal embedding lookup matrix.
1052
+ use_cache (`bool`, *optional*):
1053
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1054
+ `past_key_values`).
1055
+ output_attentions (`bool`, *optional*):
1056
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1057
+ tensors for more detail.
1058
+ output_hidden_states (`bool`, *optional*):
1059
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1060
+ more detail.
1061
+ return_dict (`bool`, *optional*):
1062
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1063
+ """
1064
+
1065
+
1066
+ @add_start_docstrings(
1067
+ "The bare Phi-3 model outputting raw hidden-states without any specific head on top.",
1068
+ PHI3_START_DOCSTRING,
1069
+ )
1070
+ class Phi3Model(Phi3PreTrainedModel):
1071
+ """
1072
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
1073
+
1074
+ Args:
1075
+ config: Phi3Config
1076
+ """
1077
+
1078
+ def __init__(self, config: Phi3Config):
1079
+ super().__init__(config)
1080
+ self.padding_idx = config.pad_token_id
1081
+ self.vocab_size = config.vocab_size
1082
+
1083
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1084
+ self.embed_dropout = nn.Dropout(config.embd_pdrop)
1085
+ self.layers = nn.ModuleList(
1086
+ [Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1087
+ )
1088
+ self._attn_implementation = config._attn_implementation
1089
+ self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1090
+
1091
+ self.gradient_checkpointing = False
1092
+ # Initialize weights and apply final processing
1093
+ self.post_init()
1094
+
1095
+ def get_input_embeddings(self):
1096
+ return self.embed_tokens
1097
+
1098
+ def set_input_embeddings(self, value):
1099
+ self.embed_tokens = value
1100
+
1101
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1102
+ def forward(
1103
+ self,
1104
+ input_ids: torch.LongTensor = None,
1105
+ attention_mask: Optional[torch.Tensor] = None,
1106
+ position_ids: Optional[torch.LongTensor] = None,
1107
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1108
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1109
+ use_cache: Optional[bool] = None,
1110
+ output_attentions: Optional[bool] = None,
1111
+ output_hidden_states: Optional[bool] = None,
1112
+ return_dict: Optional[bool] = None,
1113
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1114
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1115
+ output_hidden_states = (
1116
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1117
+ )
1118
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1119
+
1120
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1121
+
1122
+ # retrieve input_ids and inputs_embeds
1123
+ if input_ids is not None and inputs_embeds is not None:
1124
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1125
+ elif input_ids is not None:
1126
+ batch_size, seq_length = input_ids.shape[:2]
1127
+ elif inputs_embeds is not None:
1128
+ batch_size, seq_length = inputs_embeds.shape[:2]
1129
+ else:
1130
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1131
+
1132
+ past_key_values_length = 0
1133
+
1134
+ if self.gradient_checkpointing and self.training:
1135
+ if use_cache:
1136
+ logger.warning_once(
1137
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1138
+ )
1139
+ use_cache = False
1140
+
1141
+ if use_cache:
1142
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1143
+ if use_legacy_cache:
1144
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1145
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1146
+
1147
+ if position_ids is None:
1148
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1149
+ position_ids = torch.arange(
1150
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1151
+ )
1152
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1153
+ else:
1154
+ position_ids = position_ids.view(-1, seq_length).long()
1155
+
1156
+ if inputs_embeds is None:
1157
+ inputs_embeds = self.embed_tokens(input_ids)
1158
+
1159
+ if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
1160
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1161
+ if is_padding_right:
1162
+ raise ValueError(
1163
+ "You are attempting to perform batched generation with padding_side='right'"
1164
+ " this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to "
1165
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1166
+ )
1167
+
1168
+ if self._attn_implementation == "flash_attention_2":
1169
+ # 2d mask is passed through the layers
1170
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1171
+ else:
1172
+ # 4d mask is passed through the layers
1173
+ attention_mask = _prepare_4d_causal_attention_mask(
1174
+ attention_mask,
1175
+ (batch_size, seq_length),
1176
+ inputs_embeds,
1177
+ past_key_values_length,
1178
+ sliding_window=self.config.sliding_window,
1179
+ )
1180
+
1181
+ hidden_states = inputs_embeds
1182
+
1183
+ # decoder layers
1184
+ all_hidden_states = () if output_hidden_states else None
1185
+ all_self_attns = () if output_attentions else None
1186
+ next_decoder_cache = None
1187
+
1188
+ for decoder_layer in self.layers:
1189
+ if output_hidden_states:
1190
+ all_hidden_states += (hidden_states,)
1191
+
1192
+ if self.gradient_checkpointing and self.training:
1193
+ layer_outputs = self._gradient_checkpointing_func(
1194
+ decoder_layer.__call__,
1195
+ hidden_states,
1196
+ attention_mask,
1197
+ position_ids,
1198
+ past_key_values,
1199
+ output_attentions,
1200
+ use_cache,
1201
+ )
1202
+ else:
1203
+ layer_outputs = decoder_layer(
1204
+ hidden_states,
1205
+ attention_mask=attention_mask,
1206
+ position_ids=position_ids,
1207
+ past_key_value=past_key_values,
1208
+ output_attentions=output_attentions,
1209
+ use_cache=use_cache,
1210
+ )
1211
+
1212
+ hidden_states = layer_outputs[0]
1213
+
1214
+ if use_cache:
1215
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1216
+
1217
+ if output_attentions:
1218
+ all_self_attns += (layer_outputs[1],)
1219
+
1220
+ hidden_states = self.norm(hidden_states)
1221
+
1222
+ # add hidden states from the last decoder layer
1223
+ if output_hidden_states:
1224
+ all_hidden_states += (hidden_states,)
1225
+
1226
+ next_cache = None
1227
+ if use_cache:
1228
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1229
+ if not return_dict:
1230
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1231
+ return BaseModelOutputWithPast(
1232
+ last_hidden_state=hidden_states,
1233
+ past_key_values=next_cache,
1234
+ hidden_states=all_hidden_states,
1235
+ attentions=all_self_attns,
1236
+ )
1237
+
1238
+
1239
+ class Phi3ForCausalLM(Phi3PreTrainedModel):
1240
+ _tied_weights_keys = ["lm_head.weight"]
1241
+
1242
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
1243
+ def __init__(self, config):
1244
+ super().__init__(config)
1245
+ self.model = Phi3Model(config)
1246
+ self.vocab_size = config.vocab_size
1247
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1248
+
1249
+ # Initialize weights and apply final processing
1250
+ self.post_init()
1251
+
1252
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
1253
+ def get_input_embeddings(self):
1254
+ return self.model.embed_tokens
1255
+
1256
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
1257
+ def set_input_embeddings(self, value):
1258
+ self.model.embed_tokens = value
1259
+
1260
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
1261
+ def get_output_embeddings(self):
1262
+ return self.lm_head
1263
+
1264
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
1265
+ def set_output_embeddings(self, new_embeddings):
1266
+ self.lm_head = new_embeddings
1267
+
1268
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
1269
+ def set_decoder(self, decoder):
1270
+ self.model = decoder
1271
+
1272
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
1273
+ def get_decoder(self):
1274
+ return self.model
1275
+
1276
+ # Ignore copy
1277
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1278
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1279
+ def forward(
1280
+ self,
1281
+ input_ids: torch.LongTensor = None,
1282
+ attention_mask: Optional[torch.Tensor] = None,
1283
+ position_ids: Optional[torch.LongTensor] = None,
1284
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1285
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1286
+ labels: Optional[torch.LongTensor] = None,
1287
+ use_cache: Optional[bool] = None,
1288
+ output_attentions: Optional[bool] = None,
1289
+ output_hidden_states: Optional[bool] = None,
1290
+ return_dict: Optional[bool] = None,
1291
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1292
+ r"""
1293
+ Args:
1294
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1295
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1296
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1297
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1298
+
1299
+ Returns:
1300
+
1301
+ Example:
1302
+
1303
+ ```python
1304
+ >>> from transformers import AutoTokenizer, Phi3ForCausalLM
1305
+
1306
+ >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1307
+ >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1308
+
1309
+ >>> prompt = "This is an example script ."
1310
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1311
+
1312
+ >>> # Generate
1313
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1314
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1315
+ 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
1316
+ ```"""
1317
+
1318
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1319
+ output_hidden_states = (
1320
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1321
+ )
1322
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1323
+
1324
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1325
+ outputs = self.model(
1326
+ input_ids=input_ids,
1327
+ attention_mask=attention_mask,
1328
+ position_ids=position_ids,
1329
+ past_key_values=past_key_values,
1330
+ inputs_embeds=inputs_embeds,
1331
+ use_cache=use_cache,
1332
+ output_attentions=output_attentions,
1333
+ output_hidden_states=output_hidden_states,
1334
+ return_dict=return_dict,
1335
+ )
1336
+
1337
+ hidden_states = outputs[0]
1338
+ logits = self.lm_head(hidden_states)
1339
+ logits = logits.float()
1340
+
1341
+ loss = None
1342
+ if labels is not None:
1343
+ # Shift so that tokens < n predict n
1344
+ shift_logits = logits[..., :-1, :].contiguous()
1345
+ shift_labels = labels[..., 1:].contiguous()
1346
+ # Flatten the tokens
1347
+ loss_fct = CrossEntropyLoss()
1348
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1349
+ shift_labels = shift_labels.view(-1)
1350
+ # Enable model parallelism
1351
+ shift_labels = shift_labels.to(shift_logits.device)
1352
+ loss = loss_fct(shift_logits, shift_labels)
1353
+
1354
+ if not return_dict:
1355
+ output = (logits,) + outputs[1:]
1356
+ return (loss,) + output if loss is not None else output
1357
+
1358
+ return CausalLMOutputWithPast(
1359
+ loss=loss,
1360
+ logits=logits,
1361
+ past_key_values=outputs.past_key_values,
1362
+ hidden_states=outputs.hidden_states,
1363
+ attentions=outputs.attentions,
1364
+ )
1365
+
1366
+ # Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
1367
+ def prepare_inputs_for_generation(
1368
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1369
+ ):
1370
+ if past_key_values is not None:
1371
+ if isinstance(past_key_values, Cache):
1372
+ cache_length = past_key_values.get_seq_length()
1373
+ past_length = past_key_values.seen_tokens
1374
+ max_cache_length = past_key_values.get_max_length()
1375
+ else:
1376
+ cache_length = past_length = past_key_values[0][0].shape[2]
1377
+ max_cache_length = None
1378
+
1379
+ # Keep only the unprocessed tokens:
1380
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1381
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1382
+ # input)
1383
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1384
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1385
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1386
+ # input_ids based on the past_length.
1387
+ elif past_length < input_ids.shape[1]:
1388
+ input_ids = input_ids[:, past_length:]
1389
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1390
+
1391
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1392
+ if (
1393
+ max_cache_length is not None
1394
+ and attention_mask is not None
1395
+ and cache_length + input_ids.shape[1] > max_cache_length
1396
+ ):
1397
+ attention_mask = attention_mask[:, -max_cache_length:]
1398
+
1399
+ position_ids = kwargs.get("position_ids", None)
1400
+ if attention_mask is not None and position_ids is None:
1401
+ # create position_ids on the fly for batch generation
1402
+ position_ids = attention_mask.long().cumsum(-1) - 1
1403
+ position_ids.masked_fill_(attention_mask == 0, 1)
1404
+ if past_key_values:
1405
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1406
+
1407
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1408
+ if inputs_embeds is not None and past_key_values is None:
1409
+ model_inputs = {"inputs_embeds": inputs_embeds}
1410
+ else:
1411
+ model_inputs = {"input_ids": input_ids}
1412
+
1413
+ model_inputs.update(
1414
+ {
1415
+ "position_ids": position_ids,
1416
+ "past_key_values": past_key_values,
1417
+ "use_cache": kwargs.get("use_cache"),
1418
+ "attention_mask": attention_mask,
1419
+ }
1420
+ )
1421
+ return model_inputs
1422
+
1423
+ @staticmethod
1424
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
1425
+ def _reorder_cache(past_key_values, beam_idx):
1426
+ reordered_past = ()
1427
+ for layer_past in past_key_values:
1428
+ reordered_past += (
1429
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1430
+ )
1431
+ return reordered_past
1432
+
1433
+
1434
+ @add_start_docstrings(
1435
+ """
1436
+ The [`Phi3Model`] with a sequence classification head on top (linear layer).
1437
+
1438
+ [`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1439
+ (e.g. GPT-2) do.
1440
+
1441
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1442
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1443
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1444
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1445
+ each row of the batch).
1446
+ """,
1447
+ PHI3_START_DOCSTRING,
1448
+ )
1449
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
1450
+ class Phi3ForSequenceClassification(Phi3PreTrainedModel):
1451
+ def __init__(self, config):
1452
+ super().__init__(config)
1453
+ self.num_labels = config.num_labels
1454
+ self.model = Phi3Model(config)
1455
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1456
+
1457
+ # Initialize weights and apply final processing
1458
+ self.post_init()
1459
+
1460
+ def get_input_embeddings(self):
1461
+ return self.model.embed_tokens
1462
+
1463
+ def set_input_embeddings(self, value):
1464
+ self.model.embed_tokens = value
1465
+
1466
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1467
+ def forward(
1468
+ self,
1469
+ input_ids: torch.LongTensor = None,
1470
+ attention_mask: Optional[torch.Tensor] = None,
1471
+ position_ids: Optional[torch.LongTensor] = None,
1472
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1473
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1474
+ labels: Optional[torch.LongTensor] = None,
1475
+ use_cache: Optional[bool] = None,
1476
+ output_attentions: Optional[bool] = None,
1477
+ output_hidden_states: Optional[bool] = None,
1478
+ return_dict: Optional[bool] = None,
1479
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1480
+ r"""
1481
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1482
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1483
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1484
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1485
+ """
1486
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1487
+
1488
+ model_outputs = self.model(
1489
+ input_ids,
1490
+ attention_mask=attention_mask,
1491
+ position_ids=position_ids,
1492
+ past_key_values=past_key_values,
1493
+ inputs_embeds=inputs_embeds,
1494
+ use_cache=use_cache,
1495
+ output_attentions=output_attentions,
1496
+ output_hidden_states=output_hidden_states,
1497
+ return_dict=return_dict,
1498
+ )
1499
+ hidden_states = model_outputs[0]
1500
+ logits = self.score(hidden_states)
1501
+
1502
+ if input_ids is not None:
1503
+ batch_size = input_ids.shape[0]
1504
+ else:
1505
+ batch_size = inputs_embeds.shape[0]
1506
+
1507
+ if self.config.pad_token_id is None and batch_size != 1:
1508
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1509
+ if self.config.pad_token_id is None:
1510
+ sequence_lengths = -1
1511
+ else:
1512
+ if input_ids is not None:
1513
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1514
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1515
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1516
+ sequence_lengths = sequence_lengths.to(logits.device)
1517
+ else:
1518
+ sequence_lengths = -1
1519
+
1520
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1521
+
1522
+ loss = None
1523
+ if labels is not None:
1524
+ labels = labels.to(logits.device)
1525
+ if self.config.problem_type is None:
1526
+ if self.num_labels == 1:
1527
+ self.config.problem_type = "regression"
1528
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1529
+ self.config.problem_type = "single_label_classification"
1530
+ else:
1531
+ self.config.problem_type = "multi_label_classification"
1532
+
1533
+ if self.config.problem_type == "regression":
1534
+ loss_fct = MSELoss()
1535
+ if self.num_labels == 1:
1536
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1537
+ else:
1538
+ loss = loss_fct(pooled_logits, labels)
1539
+ elif self.config.problem_type == "single_label_classification":
1540
+ loss_fct = CrossEntropyLoss()
1541
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1542
+ elif self.config.problem_type == "multi_label_classification":
1543
+ loss_fct = BCEWithLogitsLoss()
1544
+ loss = loss_fct(pooled_logits, labels)
1545
+ if not return_dict:
1546
+ output = (pooled_logits,) + model_outputs[1:]
1547
+ return ((loss,) + output) if loss is not None else output
1548
+
1549
+ return SequenceClassifierOutputWithPast(
1550
+ loss=loss,
1551
+ logits=pooled_logits,
1552
+ past_key_values=model_outputs.past_key_values,
1553
+ hidden_states=model_outputs.hidden_states,
1554
+ attentions=model_outputs.attentions,
1555
+ )
1556
+
1557
+
1558
+ @add_start_docstrings(
1559
+ """
1560
+ [`Phi3Model`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1561
+ Named-Entity-Recognition (NER) tasks.
1562
+ """,
1563
+ PHI3_START_DOCSTRING,
1564
+ )
1565
+ # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
1566
+ class Phi3ForTokenClassification(Phi3PreTrainedModel):
1567
+ def __init__(self, config: Phi3Config):
1568
+ super().__init__(config)
1569
+ self.num_labels = config.num_labels
1570
+
1571
+ self.model = Phi3Model(config)
1572
+ if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
1573
+ classifier_dropout = config.classifier_dropout
1574
+ elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
1575
+ classifier_dropout = config.hidden_dropout
1576
+ else:
1577
+ classifier_dropout = 0.1
1578
+ self.dropout = nn.Dropout(classifier_dropout)
1579
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1580
+
1581
+ # Initialize weights and apply final processing
1582
+ self.post_init()
1583
+
1584
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1585
+ @add_code_sample_docstrings(
1586
+ checkpoint=_CHECKPOINT_FOR_DOC,
1587
+ output_type=TokenClassifierOutput,
1588
+ config_class=_CONFIG_FOR_DOC,
1589
+ )
1590
+ def forward(
1591
+ self,
1592
+ input_ids: Optional[torch.LongTensor] = None,
1593
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1594
+ attention_mask: Optional[torch.Tensor] = None,
1595
+ inputs_embeds: Optional[torch.Tensor] = None,
1596
+ labels: Optional[torch.Tensor] = None,
1597
+ use_cache: Optional[bool] = None,
1598
+ output_attentions: Optional[bool] = None,
1599
+ output_hidden_states: Optional[bool] = None,
1600
+ return_dict: Optional[bool] = None,
1601
+ **deprecated_arguments,
1602
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1603
+ r"""
1604
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1605
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1606
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1607
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1608
+ """
1609
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1610
+
1611
+ model_outputs = self.model(
1612
+ input_ids,
1613
+ past_key_values=past_key_values,
1614
+ attention_mask=attention_mask,
1615
+ inputs_embeds=inputs_embeds,
1616
+ use_cache=use_cache,
1617
+ output_attentions=output_attentions,
1618
+ output_hidden_states=output_hidden_states,
1619
+ return_dict=return_dict,
1620
+ )
1621
+
1622
+ hidden_states = model_outputs[0]
1623
+ hidden_states = self.dropout(hidden_states)
1624
+ logits = self.classifier(hidden_states)
1625
+
1626
+ loss = None
1627
+ if labels is not None:
1628
+ # move labels to correct device to enable model parallelism
1629
+ labels = labels.to(logits.device)
1630
+ batch_size, seq_length = labels.shape
1631
+ loss_fct = CrossEntropyLoss()
1632
+ loss = loss_fct(
1633
+ logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
1634
+ )
1635
+
1636
+ if not return_dict:
1637
+ output = (logits,) + model_outputs[2:]
1638
+ return ((loss,) + output) if loss is not None else output
1639
+
1640
+ return TokenClassifierOutput(
1641
+ loss=loss,
1642
+ logits=logits,
1643
+ hidden_states=model_outputs.hidden_states,
1644
+ attentions=model_outputs.attentions,
1645
+ )