--- license: apache-2.0 base_model: studio-ousia/luke-japanese-base-lite tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: out results: [] --- [Visualize in Weights & Biases](https://wandb.ai/rspeech3399/huggingface/runs/a23y11m9) # out This model is a fine-tuned version of [studio-ousia/luke-japanese-base-lite](https://huggingface.co/studio-ousia/luke-japanese-base-lite) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2009 - Accuracy: 0.9283 - Precision: 0.9198 - Recall: 0.9384 - F1: 0.9290 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.316 | 1.0 | 1479 | 0.2245 | 0.9127 | 0.9027 | 0.9251 | 0.9138 | | 0.1696 | 2.0 | 2958 | 0.1869 | 0.9308 | 0.9234 | 0.9395 | 0.9314 | | 0.1427 | 3.0 | 4437 | 0.2009 | 0.9283 | 0.9198 | 0.9384 | 0.9290 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.0+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1