--- license: apache-2.0 base_model: studio-ousia/mluke-large-lite tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: out results: [] --- ## Fine-tuning - this model was trained to classify whether input text comes from "chosen sentence" or "rejected sentence" - the probability (logits after passing softmax function) in last layer of this model can be used to quantify the preference from user input - fine-tuned [studio-ousia/mluke-large-lite](https://huggingface.co/studio-ousia/mluke-large-lite) via full parameter tuning using [open-preference-v0.3](https://huggingface.co/datasets/ryota39/open_preference-v0.3) - trained on bf16 format ## Metric - train and validation split |train loss|eval loss|accuracy|recall|precision|f1-score| |:---|:---|:---|:---|:---|:---| |0.114|0.1615|0.9399|0.9459|0.9346|0.9402| - test split |accuracy|recall|precision|f1-score| |:---|:---|:---|:---| |0.9416|0.9319|0.9504|0.9411| - confusion matrix when test split ![image/png](https://cdn-uploads.huggingface.co/production/uploads/651e3f30ca333f3c8df692b8/00ONMe0qlqv7XB14ttrPY.png) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4109 | 1.0 | 1479 | 0.2462 | 0.9003 | 0.8710 | 0.9399 | 0.9041 | | 0.1579 | 2.0 | 2958 | 0.1573 | 0.9399 | 0.9495 | 0.9293 | 0.9393 | | 0.114 | 3.0 | 4437 | 0.1615 | 0.9399 | 0.9346 | 0.9460 | 0.9403 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.0+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1