Initial Commit
Browse files- README.md +73 -3
- config.json +47 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +15 -0
- vocab.json +0 -0
README.md
CHANGED
@@ -1,3 +1,73 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-nc-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
pipeline_tag: fill-mask
|
4 |
+
widget:
|
5 |
+
- text: >-
|
6 |
+
The PDF contains an action object. Upon a victim opening the PDF it will send a query to Google: http://www[.]google[.]com/url?q=http%3A%2F%2F9348243249382479234343284324023432748892349702394023.xyz&sa=D&sntz=1&usg=AFQjCNFWmVffgSGlrrv-2U9sSOJYzfUQqw. This link is a typical <mask> attack.
|
7 |
+
tags:
|
8 |
+
- cybersecurity
|
9 |
+
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# CyBERTuned
|
16 |
+
|
17 |
+
CyBERTuned is a BERT-like model trained with an NLE (non-linguistic element) aware pretraining method tuned for the cybersecurity domain.
|
18 |
+
|
19 |
+
|
20 |
+
## Sample Usage
|
21 |
+
```python
|
22 |
+
>>> from transformers import pipeline
|
23 |
+
>>> folder_dir = "CyBERTuned"
|
24 |
+
>>> unmasker = pipeline('fill-mask', model=folder_dir)
|
25 |
+
>>> unmasker("RagnarLocker, LockBit, and REvil are types of <mask>.")
|
26 |
+
|
27 |
+
[{'score': 0.8489783406257629, 'token': 25346, 'token_str': ' ransomware', 'sequence': 'RagnarLocker, LockBit, and REvil are types of ransomware.'},
|
28 |
+
{'score': 0.1364559829235077, 'token': 16886, 'token_str': ' malware', 'sequence': 'RagnarLocker, LockBit, and REvil are types of malware.'},
|
29 |
+
{'score': 0.0022238395176827908, 'token': 1912, 'token_str': ' attacks', 'sequence': 'RagnarLocker, LockBit, and REvil are types of attacks.'},
|
30 |
+
{'score': 0.001197474543005228, 'token': 11341, 'token_str': ' infections', 'sequence': 'RagnarLocker, LockBit, and REvil are types of infections.'},
|
31 |
+
{'score': 0.0009669850114732981, 'token': 6773, 'token_str': ' files', 'sequence': 'RagnarLocker, LockBit, and REvil are types of files.'}]
|
32 |
+
|
33 |
+
>>> # text requiring url comprehension (redirection attack), modified from https://intezer.com/blog/research/targeted-phishing-attack-against-ukrainian-government-expands-to-georgia/
|
34 |
+
>>> url_text = 'The PDF contains an action object. Upon a victim opening the PDF it will send a query to Google: http://www[.]google[.]com/url?q=http%3A%2F%2F9348243249382479234343284324023432748892349702394023.xyz&sa=D&sntz=1&usg=AFQjCNFWmVffgSGlrrv-2U9sSOJYzfUQqw. This link is a typical <mask> attack.'
|
35 |
+
>>> unmasker(url_text)[0]
|
36 |
+
|
37 |
+
{'score': 0.1701660305261612, 'token': 30970, 'token_str': ' redirect', 'sequence': 'The PDF contains an action object. Upon a victim opening the PDF it will send a query to Google: http://www[.]google[.]com/url?q=http%3A%2F%2F9348243249382479234343284324023432748892349702394023.xyz&sa=D&sntz=1&usg=AFQjCNFWmVffgSGlrrv-2U9sSOJYzfUQqw. This link is a typical redirect attack.'}
|
38 |
+
|
39 |
+
>>> from transformers import AutoModel, AutoTokenizer
|
40 |
+
>>> model = AutoModel.from_pretrained(folder_dir)
|
41 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(folder_dir)
|
42 |
+
>>> text = "Cybersecurity information is often technically complex and relayed through unstructured text, making automation of cyber threat intelligence highly challenging."
|
43 |
+
>>> encoded = tokenizer(text, return_tensors="pt")
|
44 |
+
>>> output = model(**encoded)
|
45 |
+
>>> output[0].shape
|
46 |
+
|
47 |
+
torch.Size([1, 27, 768])
|
48 |
+
|
49 |
+
```
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 0.0006
|
55 |
+
- train_batch_size: 64
|
56 |
+
- eval_batch_size: 32
|
57 |
+
- seed: 42
|
58 |
+
- distributed_type: multi-GPU
|
59 |
+
- num_devices: 4
|
60 |
+
- gradient_accumulation_steps: 8
|
61 |
+
- total_train_batch_size: 2048
|
62 |
+
- total_eval_batch_size: 128
|
63 |
+
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
|
64 |
+
- lr_scheduler_type: linear
|
65 |
+
- lr_scheduler_warmup_ratio: 0.048
|
66 |
+
- num_epochs: 200
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.27.0.dev0
|
71 |
+
- Pytorch 1.12.1
|
72 |
+
- Datasets 2.6.1
|
73 |
+
- Tokenizers 0.13.2
|
config.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaForTokClassAndMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "LABEL_0",
|
15 |
+
"1": "LABEL_1",
|
16 |
+
"2": "LABEL_2",
|
17 |
+
"3": "LABEL_3",
|
18 |
+
"4": "LABEL_4",
|
19 |
+
"5": "LABEL_5",
|
20 |
+
"6": "LABEL_6",
|
21 |
+
"7": "LABEL_7"
|
22 |
+
},
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"intermediate_size": 3072,
|
25 |
+
"label2id": {
|
26 |
+
"LABEL_0": 0,
|
27 |
+
"LABEL_1": 1,
|
28 |
+
"LABEL_2": 2,
|
29 |
+
"LABEL_3": 3,
|
30 |
+
"LABEL_4": 4,
|
31 |
+
"LABEL_5": 5,
|
32 |
+
"LABEL_6": 6,
|
33 |
+
"LABEL_7": 7
|
34 |
+
},
|
35 |
+
"layer_norm_eps": 1e-05,
|
36 |
+
"max_position_embeddings": 514,
|
37 |
+
"model_type": "roberta",
|
38 |
+
"num_attention_heads": 12,
|
39 |
+
"num_hidden_layers": 12,
|
40 |
+
"pad_token_id": 1,
|
41 |
+
"position_embedding_type": "absolute",
|
42 |
+
"torch_dtype": "float32",
|
43 |
+
"transformers_version": "4.27.0.dev0",
|
44 |
+
"type_vocab_size": 1,
|
45 |
+
"use_cache": true,
|
46 |
+
"vocab_size": 50265
|
47 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e14a208dd1d89932f8566a44e110b3562f993dc2fee9b8377bc57a4701b23674
|
3 |
+
size 498886887
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<s>",
|
4 |
+
"cls_token": "<s>",
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"errors": "replace",
|
7 |
+
"mask_token": "<mask>",
|
8 |
+
"model_max_length": 512,
|
9 |
+
"pad_token": "<pad>",
|
10 |
+
"sep_token": "</s>",
|
11 |
+
"special_tokens_map_file": null,
|
12 |
+
"tokenizer_class": "RobertaTokenizer",
|
13 |
+
"trim_offsets": true,
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|